首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
In Crustacea, an early evolutionary group (~50?000 species) inhabiting most ecological niches, sex differentiation is regulated by a male-specific androgenic gland (AG). The identification of AG-specific insulin-like factors (IAGs) and genomic sex markers offers an opportunity for a deeper understanding of the sexual differentiation mechanism in crustaceans and other arthropods. Here, we report, to our knowledge, the first full and functional sex reversal of male freshwater prawns (Macrobrachium rosenbergii) through the silencing of a single IAG-encoding gene. These "neofemales" produced all-male progeny, as proven by sex-specific genomic markers. This finding offers an insight regarding the biology and evolution of sex differentiation regulation, with a novel perspective for the evolution of insulin-like peptides. Our results demonstrate how temporal intervention with a key regulating gene induces a determinative, extreme phenotypic shift. Our results also carry tremendous ecological and commercial implications. Invasive and pest crustacean species represent genuine concerns worldwide without an apparent solution. Such efforts might, therefore, benefit from sexual manipulations, as has been successfully realized with other arthropods. Commercially, such manipulation would be significant in sexually dimorphic cultured species, allowing the use of nonbreeding, monosex populations while dramatically increasing yield and possibly minimizing the invasion of exotic cultured species into the environment.  相似文献   

3.
Previous studies have demonstrated robust BAK gene silencing via RNA interference (RNAi). To investigate whether BAK RNAi may serve as a co-therapeutic agent in neural cell death, we herein established a cell degeneration model using a human neuroblastoma cell line (SH-SY5Y) treated by aluminum (Al). Combining cell viability assays and expression analyses by QRT (quantitative real-time)-PCR and immunocytochemistry, we selected and validated the optimal small interfering RNA (siRNA) from three candidate siRNAs for the BAK gene. Our data identified siRNA1 as the most effective siRNA; the optimal concentration of the transfection agent was 10 nM and the optimal incubation period was 24 h. The transfection and knockdown efficiency was 93% and 58%, respectively, which closely correlated with the BAK protein expression. SH-SY5Y cells with BAK knockdown showed a clear resistance against cell death and Al-induced apoptosis. These results indicate that genetic inactivation of BAK could be an effective strategy in delaying the onset of apoptosis in Al-treated cells, and exemplify the therapeutic potential of RNAi-based methods for the treatment of neural cell degeneration.  相似文献   

4.
5.
6.
Inbred male mice homozygous for the stubby gene mutation were reported to be sterile nineteen years ago. However, the basis of the sterility has not been identified since testicular steroidogenesis and spermatogenesis are normal. In the present studies, the sexual behavior of stubby mice and their coisogenic, normal siblings was compared quantitatively. The experimental observations provided unequivocal evidence that the phenotypic basis of the sterility of stubby mice is impotency. Stubby mice represent the first animal model for the study of impotence and provide the first evidence of an autosomal gene mutation that has a primary effect on male sexual behavior.  相似文献   

7.
Ticks impact human and animal health worldwide and new control methods are needed to circumvent drawbacks of tick control by acaricide application including selection of drug resistant ticks and environmental pollution. Using RNA interference we silenced the expression of a single gene, subolesin, and produced ticks with diminished reproductive performance and prevented successful mating and production of viable offspring. We propose a sterile acarine technique (SAT) for reduction of tick populations by release of subolesin-silenced ticks. Conservation of subolesin among tick species suggests that SAT may be useful for control of many medically and economically important tick species.  相似文献   

8.
9.
RNA interference is a natural gene expression silencing system that appears throughout the tree of life. As the list of cellular processes linked to RNAi grows, so does the demand for tools to accurately measure RNAi dynamics in living cells. We engineered a synthetic RNAi sensor that converts this negative regulatory signal into a positive output in living mammalian cells thereby allowing increased sensitivity and activation. Furthermore, the circuit's modular design allows potentially any microRNA of interest to be detected. We demonstrated that the circuit responds to an artificial microRNA and becomes activated when the RNAi target is replaced by a natural microRNA target (miR-34) in U2OS osteosarcoma cells. Our studies extend the application of rationally designed synthetic switches to RNAi, providing a sensitive way to visualize the dynamics of RNAi activity rather than just the presence of miRNA molecules.  相似文献   

10.
RNA silencing of single and multiple members in a gene family of rice   总被引:35,自引:0,他引:35       下载免费PDF全文
Miki D  Itoh R  Shimamoto K 《Plant physiology》2005,138(4):1903-1913
RNA silencing with inverted repeat (IR) constructs has been used to suppress gene expression in various organisms. However, the transitive RNA-silencing effect described in plants may preclude the use of RNA silencing for a gene family. Here, we show that, in rice (Oryza sativa), transitive RNA silencing (spreading of double-stranded RNA along the target mRNA) occurred with the green fluorescent protein transgene but not with the endogenous phytoene desaturase gene. We fused IR copies of unique 3' untranslated regions derived from the rice OsRac gene family to a strong promoter and stably introduced them into rice. Each of the seven members of the OsRac gene family was specifically suppressed by its respective IR construct. We also examined IR constructs in which multiple 3' untranslated regions were fused and showed that three members of the OsRac gene family were effectively suppressed by a single construct. Using highly conserved regions of the two members of the OsRac gene family, we also suppressed the expression of all members of the gene family with variable efficiencies. These results suggest that RNA silencing is a useful method for the functional analysis of gene families in rice and other plants.  相似文献   

11.
The lipocalin family of proteins functions in the transport of steroids, carotenoids, retinoids, and other small hydrophobic molecules. Recently, a lipocalin (MrLC) was isolated from the prawn Macrobrachium rosenbergii and its expression varied with the molting cycle. In this study, knockdown of the MrLC gene by RNA interference (RNAi) was performed and resulted in a shift in body color from blue to orangish red over the entire carapace. By immune-gold electron microscopy, MrLC was found to co-localize with the lipid droplets in subepidermal adiose tissue that were found to be decreased dramatically in MrLC knockdown prawns, in which a reduction in relative fat content was also quantified. Furthermore, MrLC was found to specifically bind astaxanthin and molt hormone (20-hydroxyecdysone) in both in vitro ligand binding assay and in vivo native ligand detection. These results suggested that MrLC plays roles in the regulation of coloration through its association with astaxanthin and may also be involved in the regulation of molting in crustacean.  相似文献   

12.
13.

Background  

Animals utilize a wide variety of tactics to attract reproductive partners. Behavioral experiments often indicate an important role for visual cues in fish, but their molecular basis remains almost entirely unknown. Studies on model species (such as zebrafish and medaka) allow investigations into this fundamental question in behavioral and evolutionary biology.  相似文献   

14.
15.

Background

Sphingosine-1-phosophate (S1P) is a biologically active sphingolipid metabolite that influences cellular events including differentiation, proliferation, and migration. S1P acts through five distinct cell surface receptors designated S1P1-5R, with S1P1R having the highest expression level in the developing heart. S1P1R is critical for vascular maturation, with its loss leading to embryonic death by E14.5; however, its function during early cardiac development is not well known. Our previous studies demonstrated that altered S1P levels adversely affects atrioventricular (AV) canal development in vitro, with reduced levels leading to cell death and elevated levels inhibiting cell migration and endothelial to mesenchymal cell transformation (EMT).

Results

We determined, by real-time PCR analysis, that S1P1R was expressed at least 10-fold higher than other S1P receptors in the developing heart. Immunohistochemical analysis revealed S1P1R protein expression in both endothelial and myocardial cells in the developing atrium and ventricle. Using AV canal cultures, we observed that treatment with either FTY720 (an S1P1,3,4,5R agonist) or KRP203 (an S1P1R-specific agonist) caused similar effects on AV canal cultures as S1P treatment, including induction of cell rounding, inhibition of cell migration, and inhibition of EMT. In vivo, morphological analysis of embryonic hearts at E10.5 revealed that S1P1R-/- hearts were malformed with reduced myocardial tissue. In addition to reduced myocardial tissue, E12.5 S1P1R-/- hearts had disrupted morphology of the heart wall and trabeculae, with thickened and disorganized outer compact layer and reduced fibronectin (FN) deposition compared to S1P1R+/+ littermates. The reduced myocardium was accompanied by a decrease in cell proliferation but not an increase in apoptosis.

Conclusions

These data indicate that S1P1R is the primary mediator of S1P action in AV canal cultures and that loss of S1P1R expression in vivo leads to malformed embryonic hearts, in part due to reduced fibronectin expression and reduced cell proliferation.  相似文献   

16.
17.
18.
Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号