首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low molecular mass pectate lyase from Fusarium moniliforme was unfolded reversibly by urea and Gdn-HCl at its optimum pH of 8.5, as monitored by intrinsic fluorescence, circular dichroism, and enzymatic activity measurements. Equilibrium unfolding studies yielded a deltaG(H(2)O) of 1.741 kcal/mol, D1/2 of 2.3M, and m value of 0.755kcal/molM with urea and a deltaG(H(2)O) of 1.927kcal/mol, D1/2 of 1.52M, and m value of 1.27 kcal/molM with Gdn-HCl as the denaturant. Thermal denaturation of the pectate lyase at, pH 8.5, was also reversible even after exposure to 75 degrees C for 10 min. Thermodynamic parameters calculated from thermal denaturation curves at pH values from 5.0 to 8.5 yielded a deltaCp of 0.864kcal/(molK). The deltaG(25 degrees C) at, pH 8.5, was 2.06kcal/mol and was in good agreement with the deltaG(H(2)O) values obtained from chemical denaturation curves. There was no exposure of hydrophobic pockets during chemical or thermal denaturation as indicated by the inability of ANS to bind the pectate lyase.  相似文献   

2.
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.  相似文献   

3.
The conformational stabilities of the vnd (ventral nervous system defective)/NK-2 homeodomain [HD(wt); residues 1-80 that encompass the 60-residue homeodomain] and those harboring mutations in helix III of the DNA recognition site [HD(H52R) and HD(H52R/T56W)] have been investigated by differential scanning calorimetry (DSC) and ellipticity changes at 222 nm. Thermal unfolding reactions at pH 7.4 are reversible and repeatable in the presence of 50-500 mM NaCl with DeltaC(p) = 0.52 +/- 0.04 kcal K(-1) mol(-1). A substantial stabilization of HD(wt) is produced by 50 mM phosphate or by the addition of 100-500 mM NaCl to 50 mM Hepes, pH 7.4, buffer (from T(m) = 35.5 degrees C to T(m) 43-51 degrees C; DeltaH(vH) congruent with 47 +/- 5 kcal mol(-1)). The order of stability is HD(H52R/T56W) > HD(H52R) > HD(wt), irrespective of the anions present. Progress curves for ellipticity changes at 222 nm as a function of increasing temperature are fitted well by a two-state unfolding model, and the cooperativity of secondary structure changes is greater for mutant homeodomains than for HD(wt) and also is increased by adding 100 mM NaCl to Hepes buffer. A 33% quench of the intrinsic tryptophanyl residue fluorescence of HD(wt) by phosphate binding (K(D)' = 2.6 +/- 0.3 mM phosphate) is reversed approximately 60% by DNA binding. Thermodynamic parameters for vnd/NK-2 homeodomain proteins binding sequence-specific 18 bp DNA have been determined by isothermal titration calorimetry (10-30 degrees C). Values of DeltaC(p) are +0.25, -0.17, and -0.10 +/- 0.04 kcal K(-1) mol(-1) for HD(wt), HD(H52R), and HD(H52R/T56W) binding duplex DNA, respectively. Interactions of homeodomains with DNA are enthalpically controlled at 298 K and pH 7.4 with corresponding DeltaH values of -6.6 +/- 0.5, -10.8 +/- 0.1, and -9.0 +/- 0.6 kcal mol(-1) and DeltaG' values of -11.0 +/- 0.1, -11.0 +/- 0.1, and -11.3 +/- 0.3 kcal mol(-1) with a binding stoichiometry of 1.0 +/- 0.1. Thermodynamic parameters for DNA binding are not predicted from homeodomain structural changes that occur upon complexing to DNA and must reflect also solvent and possibly DNA rearrangements.  相似文献   

4.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

5.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

6.
The double-helical conformations of d(m5-C-G-C-G-m5-C-G) in aqueous solution were studied by circular dichroism and 1H NMR spectroscopy. In 0.1 M NaCl, only the B form is detected whereas the Z form is strongly predominant in 3 M NaCl. In the presence of 2 M NaCl, two resonance signals corresponding to the B and Z duplexes were observed for each proton below 50 degrees C, indicating a slow exchange between B and Z. However, the B-Z exchange becomes intermediate or fast in the 55-80 degrees C temperature interval. By contrast the exchange between B helix and single-stranded (or coil) forms is much faster for the same temperature conditions. The Z form is only detectable when the coil form is practically absent. With decreasing temperature the B form decreases in favor of the Z form. From proton line-width measurements under various experimental conditions, it was also shown that Z exchanges only with B, while the latter also exchanges with the single-stranded form (S): Z in equilibrium B in equilibrium S. The enthalpy value is about 8 +/- 1 kcal/mol for the B-Z transition and about 40 +/- 2 kcal/mol for the B-S dissociation (2 M NaCl solution). The activation energy is about 47 +/- 2 kcal/mol for the Z----B and 39 +/- 2 kcal/mol for the B----Z reaction. Very good agreement between the experimental results and computed data (based on the above kinetic reaction model) was found for the B, Z, and coil proportions. The B-Z transition of methylated d(C-G)n oligomers is only possible when the Watson-Crick hydrogen bonds between the CG base pairs are firmly maintained; otherwise, the transformation from B to Z would not occur, and B-S dissociation would take place instead.  相似文献   

7.
The interaction of Escherichia coli RNA polymerase with poly[d(A-T)] and poly[d-(I-C)] was studied by difference absorption spectroscopy at temperatures, from 5 to 45 degrees C in the absence and presence of Mg2+. The effect of KCl concentration, at a fixed temperature, was studied from 12.5 to 400 mM. Difference absorption experiments permitted calculation of the extent of DNA opening induced by RNA polymerase and estimation of the equilibrium constant associated with the isomerization from a closed to an open RNA polymerase-DNA complex. delta H0 and delta S0 for the closed-to-open transition with poly[d(A-T)] or poly[d(I-C)] complexed with RNA polymerase are significantly lower than the values associated with the helix-to-coil transition for the free polynucleotides. For the RNA polymerase complexes with poly[d(A-T)] and poly[d(I-C)] in 50 mM KCl, delta H0 approximately 15-16 kcal/mol (63-67 kJ/mol) and delta S0 approximately 50-57 cal/K per mol (209-239 J/K per mol). The presence of Mg2+ does not change these parameters appreciably for the RNA polymerase-poly[d(A-T)] complex, but for the RNA polymerase-poly[d(I-C)] complex in the presence of Mg2+, the delta H0 and delta S0 values are larger and temperature-dependent, with delta H0 approximately 22 kcal/mol (92 kJ/mol) and delta S0 approximately 72 cal/K per mol (approx. 300 J/K per mol) at 25 degrees C, and delta Cp0 approximately 2 kcal/K per mol (approx. 8.3 kJ/K per mol). The circular dichroism (CD) changes observed for helix opening induced by RNA polymerase are qualitatively consistent with the thermally induced changes observed for the free polynucleotides, supporting the difference absorption method. The salt-dependent studies indicate that two monovalent cations are released upon helix opening. For poly[d(A-T)], the temperature-dependence of enzyme activity correlates well with the helix opening, implying this step to be the rate-determining step. In the case of poly[d(I-C)], the same is not true, and so the rate-determining step must be a process subsequent to helix opening.  相似文献   

8.
The napin from Brassica juncea, oriental mustard, is highly thermostable, proteolysis resistant and allergenic in nature. It consists of two subunits - one small (29 amino acid residues) and one large (86 amino acids residues) - held together by disulfide bonds. The thermal unfolding of napin has been followed by differential scanning calorimetry (DSC) and circular dichroism (CD) measurements. The thermal unfolding is characterized by a three state transition with T(M1) and T(M2) at 323.5 K and 335.8 K, respectively; DeltaC(P1) and DeltaC(P2) are 2.05 kcal mol(-1) K(-1) and 1.40 kcal mol(-1) K(-1), respectively. In the temperature range 310-318 K, the molecule undergoes dimerisation. Isothermal equilibrium unfolding by guanidinium hydrochloride also follows a three state transition, N <_-_-> I <_-_-> U with DeltaG(1H2O) and DeltaG(2H2O) values of 5.2 kcal mol(-1) and 5.1 kcal mol(-1) at 300 K, respectively. Excess heat capacity values obtained, are similar to those obtained from DSC measurements. There is an increase in hydrodynamic radius from 20 A to 35.0 A due to unfolding by guanidinium hydrochloride. In silico alignment of sequences of napin has revealed that the internal repeats (40%) spanning residues 31 to 60 and 73 to 109 are conserved in all Brassica species. The internal repeats may contribute to the greater stability of napin. A thorough understanding of the structure and stability of these proteins is essential before they can be exploited for genetic improvements for nutrition.  相似文献   

9.
Amphipathic alpha-helices are the membrane binding motif in many proteins. The corresponding peptides are often random coil in solution but are folded into an alpha-helix upon interaction with the membrane. The energetics of this ubiquitous folding process are still a matter of conjecture. Here, we present a new method to quantitatively analyze the thermodynamics of peptide folding at the membrane interface. We have systematically varied the helix content of a given amphipathic peptide when bound to the membrane and have correlated the thermodynamic binding parameters determined by isothermal titration calorimetry with the alpha-helix content obtained by circular dichroism spectroscopy. The peptides investigated were the antibiotic magainin 2 amide and three analogs in which two adjacent amino acid residues were substituted by their d-enantiomers. The thermodynamic parameters controlling the alpha-helix formation were found to be linearly related to the helicity of the membrane-bound peptides. Helix formation at the membrane surface is characterized by an enthalpy change of DeltaH(helix) approximately -0.7 kcal/mol per residue, an entropy change of DeltaS(helix) approximately -1.9 cal/molK residue and a free energy change of DeltaG(helix)=-0.14 kcal/mol residue. Helix formation is a strong driving force of peptide insertion into the membrane and accounts for about 50 % of the free energy of binding. An increase in temperature entails an unfolding of the membrane-bound helix. The temperature dependence can be described with the Zimm-Bragg theory and the enthalpy of unfolding agrees with that deduced from isothermal titration calorimetry.  相似文献   

10.
The delta H associated with the thermal unfolding of G-actin has been determined by differential scanning calorimetry (DSC) to be 142 +/- 5 kcal/mol, with the Tm (melting temperature) at 57.2 +/- 0.5 degrees C, at pH 8.0 (heating rate 0.5 K/min). The transition is broad and cannot be treated as a single transition that mimics a two-state process, suggesting the existence of domains. Deconvolution is done to fit it into two quasi-independent two-state transitions. For F-actin, the transition is more cooperative, with a cooperative ratio (the ratio of van't Hoff enthalpy and calorimetric enthalpy) of 1.4, indicating intermonomer interaction. The delta H of the thermal unfolding of F-actin is 162 +/- 10 kcal/mol with a Tm at 67.0 +/- 0.5 degrees C. A state of G-actin similar to that of the heat-denatured form, designated D-actin, is obtained by removing tightly bound Ca2+ with EGTA. The DSC-detectable cooperative transition is completely lost when the free calcium concentration of the medium is 1 x 10(-11) M or lower, using a Ca2+/EGTA buffer system. However, circular dichroism (CD) shows that the helix content of actin, 32% in the G-form, is only partially reduced to 19% in this apo form. The CD spectrum and the helix content of the calcium-depleted actin are almost identical with those of the heat-denatured D form. This loss of 40% of the native helical content is irreversible in both cases. The remaining 60% of the native helical content cannot be further eliminated by heating to 95 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Prabhakar R  Vreven T  Morokuma K  Musaev DG 《Biochemistry》2005,44(35):11864-11871
The mechanism of the hydrogen peroxide reduction by two molecules of glutathione catalyzed by the selenoprotein glutatione peroxidase (GPx) has been computationally studied. It has been shown that the first elementary reaction of this process, (E-SeH) + H(2)O(2) --> (E-SeOH) + H(2)O (1), proceeds via a stepwise pathway with the overall barrier of 17.1 kcal/mol, which is in good agreement with the experimental barrier of 14.9 kcal/mol. During reaction 1, the Gln83 residue has been found to play a key role as a proton acceptor, which is consistent with experiments. The second elementary reaction, (E-SeOH) + GSH --> (E-Se-SG) + HOH (2), proceeds with the barrier of 17.9 kcal/mol. The last elementary reaction, (E-Se-SG) + GSH --> (E-SeH) + GS-SG (3), is initiated with the coordination of the second glutathione molecule. The calculations clearly suggest that the amide backbone of the Gly50 residue directly participates in this reaction and the presence of two water molecules is absolutely vital for the reaction to occur. This reaction proceeds with the barrier of 21.5 kcal/mol and is suggested to be a rate-determining step of the entire GPx-catalyzed reaction H(2)O(2) + 2GSH --> GS-SG + 2H(2)O. The results discussed in the present study provide intricate details of every step of the catalytic mechanism of the GPx enzyme and are in good general agreement with experimental findings and suggestions.  相似文献   

12.
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.  相似文献   

13.
To investigate the accuracy of a model [Giese et al., 1998, Biochemistry37:1094-1100 and Mathews et al., 1999, JMol Biol 288:911-940] that predicts the stability of RNA hairpin loops, optical melting studies were conducted on sets of hairpins previously determined to have unusually stable thermodynamic parameters. Included were the tetraloops GNRA and UNCG (where N is any nucleotide and R is a purine), hexaloops with UU first mismatches, and the hairpin loop of the iron responsive element, CAGUGC. The experimental values for the GNRA loops are in excellent agreement (deltaG degrees 37 within 0.2 kcal/mol and melting temperature (TM) within 4 degrees C) with the values predicted by the model. When the UNCG hairpin loops are treated as tetraloops, and a bonus of 0.8 kcal/mol included in the prediction to account for the extra stable first mismatch (UG), the measured and predicted values are also in good agreement (deltaG degrees 37 within 0.7 kcal/mol and TM within 3 degrees C). Six hairpins with unusually stable UU first mismatches also gave good agreement with the predictions (deltaG degrees 37 within 0.5 kcal/mol and TM within 8 degrees C), except for hairpins closed by wobble base pairs. For these hairpins, exclusion of the additional stabilization term for UU first mismatches improved the prediction (AG degrees 37 within 0.1 kcal/mol and TM within 3 degrees C). Hairpins with the iron-responsive element loop were not predicted well by the model, as measured deltaG degrees 37 values were at least 1 kcal/mol greater than predicted.  相似文献   

14.
Formation and thermodynamic characteristics of C-H ... O hydrogen bonding of methylated uracils and caffeine have been studied by nmr along two lines. 1. The concentration and temperature dependencies of the PMR spectra of 1,3-dimethyluracil (m2 1,3Ura), 1,3-dimethylthymine (m2 1,3Thy), and 1,3,6-trimethyluracil (m3 1,3,6Ura) in chloroform at high concentrations of base analogs indicated the self-association of m2 1,3Ura and m2 1,3Thy via C(6)H ... O hydrogen bonding and the competitive formation of C-H ... O bonds between carbonyl oxygens and chloroform. The intermolecular interaction energy and the arrangement of molecules in the local minima of various m2 1,3Ura dimers were calculated by the method of atom-atom potentials. The deepest minimum for the m2 1,3Ura coplanar dimer corresponds to a C(6)-H ... O hydrogen-bond formation. 2. At low concentration of m2 1,3Ura and caffeine in CCl4, C(6)-H ... O bonding for m2 1,3Ura and C(8)-H ... O bonding for caffeine with oxygens of dimethyl sulfoxide (DMSO) and acetone were observed. The association constants of these complexes were obtained at different temperatures. The enthalpies delta H, of the m2 1,3Ura-DMSO, m2 1,3Ura-accetone, caffeine-DMSO, and caffeine-acetone complexes were -2 +/- 0.1 kcal/mol. The calculations showed that the deepest minimum of the caffeine-acetone coplanar complex corresponds to C(8)-H ... O bonding with energy of -3.5 kcal/mol and that of the m2 1,3Ura-acetone complexes corresponds to C(6)-H ... O bonding with energy of -3.4 kcal/mol. The approximate correction for the solvent effect provides good agreement of the experimental data with the calculations.  相似文献   

15.
The unfolding equilibrium of beta-trypsin induced by thermal and chemical denaturation was thermodynamically characterized. Thermal unfolding equilibria were monitored using UV absorption and both far- and near-UV CD spectroscopy, while fluorescence was used to monitor urea-induced transitions. Thermal and urea transition curves are reversible and cooperative and both sets of data can be reasonably fitted using a two-state model for the unfolding of this protein. Plots of the fraction denatured, calculated from thermal denaturation curves at different wavelengths, versus temperature are coincident. In addition, the ratio of the enthalpy of denaturation obtained by scanning calorimetry to the van't Hoff enthalpy is close to unity, which supports the two-state model. Considering the differences in experimental approaches, the value for the stability of beta-trypsin estimated from spectroscopic data (deltaGu = 6.0 +/- 0.2 kcal/mol) is in reasonable agreement with the value calculated from urea titration curves (deltaGUH2O = 5.5 +/- 0.3 kcal/mol) at pH 2.8 and 300 degrees K.  相似文献   

16.
Family 18 chitinases catalyze the hydrolysis of β-1,4-glycosidic bonds in chitin. The mechanism has been proposed to involve the formation of an oxazolinium ion intermediate via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile (instead of an enzyme residue). Here, we have modeled the first step of the chitin hydrolysis catalyzed by Serratia marcescens chitinase B for the first time using a combined quantum mechanics/molecular mechanics approach. The calculated reaction barriers based on multiple snapshots are 15.8-19.8 kcal mol(-1) [B3LYP/6-31+G(d)//AM1-CHARMM22], in good agreement with the activation free energy of 16.1 kcal mol(-1) derived from experiment. The enzyme significantly stabilizes the oxazolinium intermediate. Two stable conformations ((4)C(1)-chair and B(3,O)-boat) of the oxazolinium ion intermediate in subsite -1 were unexpectedly observed. The transition state structure has significant oxacarbenium ion-like character. The glycosyl residue in subsite -1 was found to follow a complex conformational pathway during the reaction ((1,4)B → [(4)H(5)/(4)E](++) → (4)C(1) ? B(3,O)), indicating complex conformational behavior in glycoside hydrolases that utilize a substrate-assisted catalytic mechanism. The D142N mutant is found to follow the same wild-type-like mechanism: the calculated barriers for reaction in this mutant (16.0-21.1 kcal mol(-1)) are higher than in the wild type, in agreement with the experiment. Asp142 is found to be important in transition state and intermediate stabilization.  相似文献   

17.
The preparation and spectroscopic characterization of duplex decamers containing site-specific cis-syn and trans-syn thymine dimers are described. Three duplex decamers, d(CGTATTATGC).d(GCATAATACG), d(CGTAT[c,s]TATGC).d(GCATAATACG), and d(CGTAT[t,s]TATGC).d(GCATAATACG), were prepared by solid-phase phosphoramidite synthesis utilizing cis-syn and trans-syn cyclobutane thymine dimer building blocks (Taylor et al., 1987; Taylor & Brockie, 1988). NMR spectra (500 MHz 2D 1H and 202 MHz 1D 31P) were obtained in "100%" D2O at 10 degrees C, and 1D exchangeable 1H spectra were obtained in 10% D2O at 10 degrees C. 1H NMR assignments for H5, H6, H8, CH3, H1', H2', and H2" were made on the basis of standard sequential NOE assignment strategies and verified in part by DQF COSY data. Comparison of the chemical shift data suggests that the helix structure is perturbed more to the 3'-side of the cis-syn dimer and more to the 5'-side of the trans-syn dimer. Thermodynamic parameters for the helix in equilibrium coil equilibrium were obtained by two-state, all or none, analysis of the melting behavior of the duplexes. Analysis of the temperature dependence of the T5CH3 1H NMR signal gave delta H = 44 +/- 4 kcal and delta S = 132 +/- 13 eu for the trans-syn duplex. Analysis of the concentration and temperature dependence of UV spectra gave delta H = 64 +/- 6 kcal and delta S = 178 +/- 18 eu for the parent duplex and delta H = 66 +/- 7 kcal and delta S = 189 +/- 19 eu for cis-syn duplex. It was concluded that photodimerization of the dTpdT unit to give the cis-syn product causes little perturbation of the DNA whereas dimerization to give the trans-syn product causes much greater perturbation, possibly in the form of a kink or dislocation at the 5'-side of the dimer.  相似文献   

18.
G D Watt  W A Bulen  A Burns  K L Hadfield 《Biochemistry》1975,14(19):4266-4272
The stoichiometry of the nitrogenase ATP-dependent H2 evolution and ecetylene reduction reactions using S2O4(2-) as an electron source was studied by various techniques. For each mole of S2O4(2-) oxidized to 2SO3(2-) by the enzyme-catalyzed reactions at 25 degrees and pH 8, 1 mol of H2 (1 mol of ethylene for acetylene reduction) and two protons are produced. Under these conditions, 4.5 mol of ATP was hydrolyzed to ADP and inorganic phosphate for each S2O4(2-) oxidized. ATP/S2O4(2-) (ATP/2e) values determined at 5 degree intervals from 10 to 35 degrees were found to go through a minimum at 20 degrees. This effect is explained in terms of possible enzyme structure modifications. Calorimetric measurements for the enzyme-catalyzed H2 evolution and acetylene reduction reactions gave deltaH values of -32.4 and -75.1 kcal/mol of S2O4(2-), respectively.  相似文献   

19.
Thermodynamics of left-handed helix formation   总被引:1,自引:0,他引:1  
H H Klump 《FEBS letters》1986,196(1):175-179
The thermodynamics of right- and left-handed helix formation by poly[d(G-C)] X poly[d(G-C)] and by poly-(dG-m5dC) X poly(dG-m5dC) were measured spectrophotometrically and calorimetrically. From the spectrophotometric measurements the thermal stabilities of the alternative helical conformations were evaluated as a function of counterion concentration. From the calorimetric measurements the enthalpies of either right-handed or left-handed helix formation were determined. The corresponding experimental delta H values are -8.6 and -11.2 kcal/mol base pairs for the two conformations in poly[dG-C)] X poly[d(G-C)], and -9.0 and -12.7 kcal/mol base pairs, respectively, for poly(dG-m5dC) X poly(dG-m5dC).  相似文献   

20.
Differential scanning calorimetry and x-ray diffraction have been used to investigate hydrated multibilayers of N-lignoceryl sphingomyelin (C24:0-SM) in the hydration range 0-75 wt % H2O. Anhydrous C24:0-SM exhibits a single endothermic transition at 81.3 degrees C (delta H = 3.6 kcal/mol). At low hydration (12.1 wt % H2O), three different endothermic transitions are observed: low-temperature transition (T1) at 39.4 degrees C (transition enthalpy (delta H1) = 2.8 kcal/mol), intermediate-temperature transition (T2) at 45.5 degrees C, and high-temperature transition (T3) at 51.3 degrees C (combined transition enthalpy (delta H2 + 3) = 5.03 kcal/mol). On increasing hydration, all three transition temperatures of C24:0-SM decrease slightly to reach limiting values of 36.7 degrees C (T1), 44.4 degrees C (T2), and 48.4 degrees C (T3) at approximately 20 wt % H2O. At 22 degrees C (below T1), x-ray diffraction of C24:0-SM at different hydration levels shows two wide-angle reflections, a sharp one at 1/4.2 A-1 and a more diffuse one at 1/4.0 A-1 together with lamellar reflections corresponding to bilayer periodicities increasing from d = 65.4 A to a limiting value of 71.1 A. Electron density profiles show a constant bilayer thickness dp-p approximately 50 A. In contrast, at 40 degrees C (between T1 and T2) a single sharp wide-angle reflection at approximately 1/4.2 A-1 is observed. The lamellar reflections correspond to a larger bilayer periodicity (increasing from d = 69.3-80.2 A) and there is some increase in dp-p (52-56 A) with hydration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号