首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Structural data suggest that DNA polymerases, from at least three different families, employ common strategies for carrying out DNA replication. Universal features include a large conformational change in the enzyme-template complex and a conserved active-site geometry that imposes a sharp kink at the 5′ end of the template strand. Recent single molecule experiments have shown that stretching the DNA template markedly alters the rate of DNA synthesis catalyzed by these motor enzymes. From these data, it was previously inferred that T7 DNA polymerase and two related enzymes convert two or four (depending on the enzyme) single-stranded (ss) template bases to double helix geometry in the polymerase active site during each catalytic cycle. We discuss structural data on related DNA polymerases, which suggest that only one (ss) template base is contracted to dsDNA geometry during the rate- limiting step of each replication cycle. Previous interpretations relied upon the global stretching curves for DNA polymers alone (with no reference to the enzyme or the structure of the transition state). In contrast, we present a structurally guided model that presumes the force dependence of the replication rate is governed chiefly by local interactions in the immediate vicinity of the enzyme's active site. Our analysis reconciles single molecule kinetic studies with structural data on DNA polymerases.  相似文献   

2.
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX–XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.  相似文献   

3.
4.
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.  相似文献   

5.
The ability of DNA polymerases to differentiate between ribonucleotides and deoxribonucleotides is fundamental to the accurate replication and maintenance of an organism's genome. The active sites of Y-family DNA polymerases are highly solvent accessible, yet these enzymes still maintain a high selectivity towards deoxyribonucleotides. Here, we biochemically demonstrate that a single active-site mutation (Y12A) in Dpo4, a model Y-family DNA polymerase, causes both a dramatic loss of ribonucleotide discrimination and a decrease in nucleotide incorporation efficiency. We also determined two ternary crystal structures of the Dpo4 Y12A mutant incorporating either dATP or ATP nucleotides opposite a template dT base. Interestingly, both dATP and ATP were hydrolyzed to dADP and ADP, respectively. In addition, the dADP and ADP molecules adopt a similar conformation and position at the polymerase active site to a ddADP molecule in the ternary crystal structure of wild-type Dpo4. The Y12A mutant loses stacking interactions with the deoxyribose of dNTP, which destabilizes the binding of incoming nucleotides. The mutation also opens a space to accommodate the 2′-OH group of the ribose of NTP in the polymerase active site. The structural change leads to the reduction in deoxynucleotide incorporation efficiency and allows ribonucleotide incorporation.  相似文献   

6.
Structures of mismatch replication errors observed in a DNA polymerase   总被引:9,自引:0,他引:9  
Johnson SJ  Beese LS 《Cell》2004,116(6):803-816
Accurate DNA replication is essential for genomic stability. One mechanism by which high-fidelity DNA polymerases maintain replication accuracy involves stalling of the polymerase in response to covalent incorporation of mismatched base pairs, thereby favoring subsequent mismatch excision. Some polymerases retain a "short-term memory" of replication errors, responding to mismatches up to four base pairs in from the primer terminus. Here we a present a structural characterization of all 12 possible mismatches captured at the growing primer terminus in the active site of a polymerase. Our observations suggest four mechanisms that lead to mismatch-induced stalling of the polymerase. Furthermore, we have observed the effects of extending a mismatch up to six base pairs from the primer terminus and find that long-range distortions in the DNA transmit the presence of the mismatch back to the enzyme active site, suggesting the structural basis for the short-term memory of replication errors.  相似文献   

7.
DNA polymerases are required for DNA replication and DNA repair in all of the living organisms. Different DNA polymerases are responsible different stages of DNA metabolism, and many of them are multifunctional enzymes. It was generally assumed that the different reactions are catalyzed by the same enzyme molecule. In addition to 1:1 DNA polymerase.DNA complex reported by crystallization studies, 2:1 and higher order DNA polymerase.DNA complexes have been identified in solution studies by various biochemical and biophysical approaches. Further, abundant evidences for the DNA polymerase-DNA interactions in several DNA polymerases suggested that the 2:1 complex represents the more active form. This review describes the current status of this emerging subject and explores their potential in vitro and in vivo functional significance, particularly for the 2:1 complexes of mammalian DNA polymerase beta (Pol beta), the Klenow fragment of E. coli DNA polymerase I (KF), and T4 DNA polymerase.  相似文献   

8.
During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).  相似文献   

9.
10.
A new group of error-prone DNA polymerases overcomes the blockage posed to normal DNA replication by damaged template bases, suggesting an active site with a loose, flexible pocket that accommodates aberrant DNA structures. We have determined a 2.8 A resolution crystal structure of the Sulfolobus solfataricus Dbh protein, a DNA translesion polymerase closely related to Escherichia coli DNA polymerase IV and human polymerase kappa. A high error rate is observed for the Dbh polymerase in a range of 10(-2)-10(-3) for all 12 base substitution mispairs. The crystal structure of Dbh reveals an overall architecture resembling other DNA polymerases but has unique features that are likely to contribute to error-prone synthesis, including -1 frameshifting mutations.  相似文献   

11.
Yan SF  Wu M  Geacintov NE  Broyde S 《Biochemistry》2004,43(24):7750-7765
Fidelity of DNA polymerases is predominantly governed by an induced fit mechanism in which the incoming dNTP in the ternary complex fits tightly into a binding pocket whose geometry is determined by the nature of the templating base. However, modification of the template with a bulky carcinogen may alter the dNTP binding pocket and thereby the polymerase incorporation fidelity. High fidelity DNA polymerases, such as bacteriophage T7 DNA polymerase, are predominantly blocked by bulky chemical lesions on the template strand during DNA replication. However, some mutagenic bypass can occur, which may lead to carcinogenesis. Experimental studies have shown that a DNA covalent adduct derived from (+)-anti-BPDE [(+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene], a carcinogenic metabolite of benzo[a]pyrene (BP), primarily blocks Sequenase 2.0, an exo(-) T7 DNA polymerase; however, a mismatched dATP can be preferentially inserted opposite the damaged adenine templating base within the active site of the polymerase [Chary, P., and Lloyd, R. S. (1995) Nucleic Acids Res. 23, 1398-1405]. The goal of this work is to elucidate structural features that contribute to DNA polymerase incorporation fidelity in the presence of this bulky covalent adduct and to interpret the experimental findings on a molecular level. We have carried out molecular modeling and molecular dynamics simulations with AMBER 6.0, investigating a T7 DNA polymerase primer-template closed ternary complex containing this 10S (+)-trans-anti-[BP]-N(6)-dA adduct in the templating position within the polymerase active site. All four incoming dNTPs were studied. The simulations show that the BP ring system fits well into an open pocket on the major groove side of the modified template adenine with anti glycosidic bond conformation, without disturbing critical polymerase-DNA interactions. However, steric hindrance between the BP ring system and the primer-template DNA causes displacement of the modified template adenine, so that the dNTP base binding pocket is enlarged. This alteration can explain the experimentally observed preference for incorporation of dATP opposite this lesion. These studies also rationalize the observed lower probabilities of incorporation of the other three nucleotides. Our results suggest that the differences in incorporation of dGTP, dCTP, and dTTP are due to the effects of imperfect geometric complementarity. Thus, the simulations suggest that altered DNA polymerase incorporation fidelity can result from adduct-induced changes in the dNTP base binding pocket geometry. Furthermore, plausible structural explanations for the observed effects of [BP]-N(6)-dA adduct stereochemistry on the observed stalling patterns are proposed.  相似文献   

12.
13.
Human DNA polymerase iota (hPoliota), a member of the Y family of DNA polymerases, differs in remarkable ways from other DNA polymerases, incorporating correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. We present here the crystal structure of hPoliota bound to template G and incoming dCTP, which reveals a G.C + Hoogsteen base pair in a DNA polymerase active site. We show that the hPoliota active site has evolved to favor Hoogsteen base pairing, wherein the template sugar is fixed in a cavity that reduces the C1'-C1' distance across the nascent base pair from approximately 10.5 A in other DNA polymerases to 8.6 A in hPoliota. The rotation of G from anti to syn is then largely in response to this curtailed C1'-C1' distance. A G.C+ Hoogsteen base pair suggests a specific mechanism for hPoliota's ability to bypass N(2)-adducted guanines that obstruct replication.  相似文献   

14.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

15.
DNA replication fidelity plays fundamental role in faithful transmission of genetic material during cell division and during transfer of genetic material from parents to progeny. Replicative polymerases are the main guardian responsible for high replication fidelity of genomic DNA. DNA main replicative polymerases are also involved in many DNA repair processes. High fidelity of DNA replication is determined by correct nucleotide selectivity in polymerase active center, and exonucleolytic proofreading that removes mismatches from primer terminus. In this article we will focus on the mechanisms that are responsible for high fidelity of replications with the special emphasis on structural studies showing important conformational changes after substrate binding. We will also stress the importance of hydrogen bonding, base pair geometry, polymerase DNA interactions and the role of accessory proteins in replication fidelity.  相似文献   

16.
Sun S  Geng L  Shamoo Y 《Proteins》2006,65(1):231-238
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation.  相似文献   

17.
The synthesis of both strands of CaMV-DNA has been studied in vitro using viral replication complexes obtained by hypotonic extraction of infected plant organelles. Hybridization of the DNA synthesized in vitro to single stranded CaMV DNA probes cloned in bacteriophage M 13 confirmed that the 35 S RNA served as a template for the synthesis of the (–) DNA strand. The response of CaMV DNA synthesis to various inhibitors suggests that a single enzyme directs both steps of the replication cycle. A comparative activity gel analysis of the DNA polymerases present in nuclear extracts from healthy and CaMV-infected turnips revealed an increase of a DNA polymerase species migrating in the 75 Kd range in infected tissue. When the enzyme activity associated with the isolated replicative complexes was similarly analyzed, the 75 Kd polymerase was markedly predominant, confirming that DNA polymerases of the -type (MW in the 110 Kd range) are not involved in the aphidicolin-insensitive CaMV DNA replication. It seems therefore increasingly probable that CaMV codes for its own polymerase.  相似文献   

18.
More than half of the 16 human DNA polymerases may have some role in DNA replication and potentially modulate the biological effects of DNA template lesions that impede replication fork progression. As one approach to understand how multiple polymerases are coordinated at the fork, we recently quantified the efficiency and fidelity with which one particular translesion synthesis enzyme, human DNA polymerase eta, copies templates containing cis-syn thymine dimers. Several observations from that study were unanticipated. Here we discuss the structural and biological implications of those results in light of earlier studies of translesion synthesis.  相似文献   

19.
Lamers MH  Georgescu RE  Lee SG  O'Donnell M  Kuriyan J 《Cell》2006,126(5):881-892
Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases. The structure of Pol III is strikingly different from those of members of the canonical DNA polymerase families, which include eukaryotic replicative polymerases, suggesting that the DNA replication machinery in bacteria arose independently. A structural element near the active site in Pol III that is not present in nucleotidyltransferases but which resembles an element at the active sites of some canonical DNA polymerases suggests that, at a more distant level, all DNA polymerases may share a common ancestor. The structure also suggests a model for interaction of Pol III with the sliding clamp and DNA.  相似文献   

20.
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ~1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号