首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropsychopharmacological properties of neuroactive steroids.   总被引:4,自引:0,他引:4  
R Rupprecht  F Holsboer 《Steroids》1999,64(1-2):83-91
In addition to the well-known genomic effects of steroid molecules via intracellular steroid receptors, certain steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been thought not to interact with intracellular receptors, but enhance gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA(A) receptors. We demonstrated that these neuroactive steroids can regulate also gene expression via the progesterone receptor after intracellular oxidation. Thus, in physiological concentrations these neuroactive steroids regulate neuronal function through their concurrent influence on transmitter-gated ion channels and gene expression. When administered in animal studies, memory-enhancing effects have been shown for pregnenolone sulfate and DHEA. The 3alpha-hydroxy ring A-reduced neuroactive steroids predominantly display anxiolytic, anticonvulsant, and hypnotic activities. Sleep studies evaluating the effects of progesterone as a precursor molecule for these neuroactive steroids revealed a sleep electroencephalogram pattern similar to that obtained by the administration of benzodiazepines. These findings extend the concept of a "cross-talk" between membrane and nuclear hormone effects and provide a new role for the therapeutic application of these steroids in neurology and psychiatry.  相似文献   

2.
神经活性甾体对神经元的作用   总被引:3,自引:0,他引:3  
神经活性甾体是指神经组织中具有活性的甾体激素,根据甾体激素的作用机制可分为三类:(1)通过细胞表面离子通道型受体介导产生效应,这些受体包括GABAA受体,NMDA受体等。(2)通过G蛋白偶联的膜受体指导第二信使反应,再通过DNA结合蛋白,调节基因表达产生效应,(3)通过细胞内受体介导调控基因的表达产生效应,甾体激素的这些效应尤其是对离子通道型受体和G蛋白偶联型受体的调节作用,已引起重视。  相似文献   

3.
4.
Baulieu E  Schumacher M 《Steroids》2000,65(10-11):605-612
Some steroids are synthesized within the central and peripheral nervous system, mostly by glial cells. These are known as neurosteroids. In the brain, certain neurosteroids have been shown to act directly on membrane receptors for neurotransmitters. For example, progesterone inhibits the neuronal nicotinic acetylcholine receptor, whereas its 3alpha,5alpha-reduced metabolite 3alpha, 5alpha-tetrahydroprogesterone (allopregnanolone) activates the type A gamma-aminobutyric acid receptor complex. Besides these effects, neurosteroids also regulate important glial functions, such as the synthesis of myelin proteins. Thus, in cultures of glial cells prepared from neonatal rat brain, progesterone increases the number of oligodendrocytes expressing the myelin basic protein (MBP) and the 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). An important role for neurosteroids in myelin repair has been demonstrated in the rodent sciatic nerve, where progesterone and its direct precursor pregnenolone are synthesized by Schwann cells. After cryolesion of the male mouse sciatic nerve, blocking the local synthesis or action of progesterone impairs remyelination of the regenerating axons, whereas administration of progesterone to the lesion site promotes the formation of new myelin sheaths.  相似文献   

5.
6.
Neuroactive steroids.   总被引:37,自引:0,他引:37  
S M Paul  R H Purdy 《FASEB journal》1992,6(6):2311-2322
Neuroactive steroids are natural or synthetic steroids that rapidly alter the excitability of neurons by binding to membrane-bound receptors such as those for inhibitory and (or) excitatory neurotransmitters. The best-studied neuroactive steroids are a series of sedative-hypnotic 3 alpha-hydroxy ring A-reduced pregnane steroids that include the major metabolites of progesterone and deoxycorticosterone, 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone) and 3 alpha,21-dihydroxy-5 alpha-pregnan-20-one (allotetrahydroDOC), respectively. These 3 alpha-hydroxysteroids do not interact with classical intracellular steroid receptors but bind stereoselectively and with high affinity to receptors for the major inhibitory neurotransmitter in brain, gamma-amino-butyric acid (GABA). Biochemical and electrophysiological studies have shown that these steroids markedly augment GABA-activated chloride ion currents in a manner similar (but not identical) to that of anesthetic barbiturates. Several steroids have also been observed to have convulsant or proconvulsant properties, including the synthetic amidine 3 alpha-hydroxy-16-imino-5 beta-17-azaandrostan-11-one (RU5135) and the natural sulfate esters of pregnenolone and dehydroepiandrosterone. Several of these have been shown to be bicuculline or picrotoxin-like GABAA receptor antagonists. Examples of steroids that alter neuronal excitability rapidly by augmenting or inhibiting excitatory amino acid receptor-mediated responses have also been reported. Recently, allopregnanolone and allotetrahydroDOC have also been measured in brain and plasma where their levels have been shown to fluctuate in response to stress and during the estrous and menstrual cycles of rats and humans, respectively. Although the major fraction of allopregnanolone in tissue, including brain, is of adrenal and/or ovarian origin, appreciable levels of allopregnanolone can still be measured in the brains of adrenalectomized and/or oophorectomized animals. Receptor-active neurosteroids may represent an important class of neuromodulators that can rapidly alter central nervous system excitability via novel nongenomic mechanisms.  相似文献   

7.
8.
9.
10.
Some steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels in addition to their well-known genomic effects via intracellular steroid receptors. Such effects were found in GABA receptor, nicotinic receptors, yet not investigated in P2X purinoceptors. In this study, the effects of dehydroepiandrosterone sulfate on the P2 purinoceptor was investigated. Results show that dehydroepiandrosterone sulfate acutely inhibits P2X purinoceptor functions in PC12 cells. Dehydroepiandrosterone sulfate suppressed ATP-induced cytosolic free calcium concentration ([Ca(2+)](i)) rise, cytosolic free sodium concentration ([Na(+)](i)) rise, and dopamine secretion in the presence of external calcium, but had no effect on ATP-induced [Ca(2+)](i) rise in the absence of external calcium or on UTP-induced [Ca(2+)](i) rise in the absence or presence of external calcium. Our data show that dehydroepiandrosterone sulfate exerted its effect on P2X, but not on the P2Y purinoceptors found in PC12 cells. Estradiol and estrone have similar effects on P2X purinoceptor, but dehydroepiandrosterone and progesterone do not.  相似文献   

11.
Synthetic progestins are used by millions of women as contraceptives and in hormone replacement therapy (HRT), although their molecular mechanisms of action are not well understood. The importance of investigating these mechanisms, as compared to those of progesterone, has been highlighted by clinical evidence showing that medroxyprogesterone acetate (MPA), a first generation progestin, increases the risk of breast cancer and coronary heart disease in HRT users. A diverse range of later generation progestins with varying structures and pharmacological properties is available for therapeutic use and it is becoming clear that different progestins elicit beneficial and adverse effects to different extents. These differences in biological activity are likely to be due to many factors including variations in dose, metabolism, pharmacokinetics, bioavailability, and regulation of, and/or binding, to serum-binding proteins and steroidogenic enzymes. Since the intracellular effects on gene expression and cell signaling of steroids are mediated via intracellular steroid receptors, differential actions via the progesterone and other steroid receptors and their isoforms, are likely to be the major cause of differential intracellular actions of progestins. Since many progestins bind not only to the progesterone receptor, but also to the glucocorticoid, androgen, mineralocorticoid, and possibly the estrogen receptors, it is plausible that synthetic progestins exert therapeutic actions as well as side-effects via some of these receptors. Here we review the molecular mechanisms of intracellular actions of old (MPA, norethisterone, levonorgestrel, gestodene) vs. new (drospirenone, dienogest, trimegestone) generation progestins, via steroid receptors.  相似文献   

12.
13.
New findings over the past decade have shown that the brain has the capability of forming steroids de novo from cholesterol, the so-called “neurosteroids”. To understand neurosteroid action in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. Recently, we have demonstrated that the Purkinje cell, a cerebellar neuron, is a major site for neurosteroid formation in a variety of vertebrates. This is the first demonstration of de novo neuronal neurosteroidogenesis in the brain. Since this discovery, organizing actions of neurosteroids are becoming clear by the studies on mammals using the Purkinje cell as an excellent cellular model. In mammals, the Purkinje cell actively synthesizes progesterone de novo from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. The Purkinje cell may also produces estradiol in the neonate. Interestingly, both progesterone and estradiol promote dendritic growth, spinogenesis and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such organizing actions may contribute to the formation of cerebellar neuronal circuit during neonatal life. This paper summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of neurosteroids in the developing Purkinje cell.  相似文献   

14.
Genomic and non-genomic effects of estrogens on endothelial cells   总被引:7,自引:0,他引:7  
  相似文献   

15.
Increasing evidence supports a neurotransmitter or a neuromodulator action for peptides derived from proopiomelanocortin in the hypothalamus. Peptide release involves sodium, potassium and calcium ion channels and is dependent on the presence of extracellular calcium ions at the time of depolarisation of neuronal membranes. Dopaminergic and gamma-aminobutyric acid-containing neuronal systems inhibit POMC-derived peptide release from the hypothalamus through D2-dopamine and GABAA receptors, respectively. Serotoninergic mechanisms exert a biphasic effect on peptide release being directly stimulatory at low concentrations of serotonin and indirectly inhibitory at higher concentrations via interactions with the endogenous dopaminergic system. Cholinergic and glutamergic drugs stimulate peptide release through nicotinic and N-methyl-D-aspartate receptors, respectively. Finally, circulating steroids regulate the hypothalamic POMC system with testosterone stimulating POMC gene expression whilst oestradiol and glucocorticoids induce an inhibitory control.  相似文献   

16.
17.
Brassinosteroid Signal Transduction: A Mix of Conservation and Novelty   总被引:3,自引:0,他引:3  
Brassinosteroids (BRs) are a unique class of plant steroids that are structurally similar to animal steroid hormones and play important roles in plant growth and development. Unlike the animal steroids, which bind to classical intracellular steroid receptors that directly modulate gene activities after translocation into the nucleus, the plant steroids rely on transmembrane receptor kinases to activate a phosphorylation cascade to regulate gene expression. Recent genetic and biochemical studies have identified several critical BR signaling components and revealed a striking mechanistic similarity between the plant steroid signaling pathway and several well-studied animal signaling cascades involving a receptor kinase and glycogen synthase kinase 3 (GSK3). A working model for BR signal transduction proposes that BR initiates its signaling pathway by promoting heterodimerization of two transmembrane receptor-like kinases at the cell surface, leading to inhibition of a GSK3 kinase and subsequent stabilization and nuclear accumulation of two GSK3 substrates that regulate BR-responsive genes. Such a simple model provides a framework for continued investigation of molecular mechanism(s) of plant steroid signaling.  相似文献   

18.
A Maggi  J Perez 《Life sciences》1985,37(10):893-906
  相似文献   

19.
Results are discussed indicating that neurotransmitters affect steroid hormone activity not only by controlling via neuroendocrine events the hypophysial-gonadal and hypophysial-adrenal axes, but also by modulating cell responsiveness to steroids in target cells. Hyper- or hypoactivity of pineal nerves result in enhancement or impairment of estradiol and testosterone effects on pineal metabolism in vivo and in vitro. Pineal cytoplasmic and nuclear estrogen and androgen receptors are modulated by norepinephrine released from nerve endings at the pinealocyte level. Neural activity affects the cycle of depletion-replenishment of pineal estrogen receptors following estradiol administration. Another site of modulation of steroid effects on the pinealocytes is the intracellular metabolism of testosterone and progesterone; nerve activity has a positive effect on testosterone aromatization and a negative effect on testosterone and progesterone 5α-reduction. NE activity on the pineal cells is mediated via β-adrenoceptors and cAMP. In the central nervous system information on the neurotransmitter modulation of steroid hormone action includes the following observations: (a) hypothalamic deafferentation depresses estrogen receptor levels in rat medial basal hypothalamus; (b) changes in noradrenergic transmission affect, via α-adrenoceptors, the estradiol-induced increase of cytosol progestin receptor concentration in guinea pig hypothalamus; (c) cAMP increases testosterone aromatization in cultured neurons from turtle brain; (d) electrical stimulation of dorsal hippocampus augments, and reserpine or 6-hydroxydopamine treatment decrease, corticoid binding in cat hypothalamus. In the adenohypophysis changes in dopaminergic input after median eminence lesions or bromocriptine treatment of rats result in opposite modifications of pituitary estrogen receptor levels. Therefore all these observations support the view that neurotransmitters can modulate the attachment of steroid hormones to their receptors in target cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号