首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deoxyribonucleic acid (DNA) of bacteriophage S13 was shown to be single-stranded by the criteria of reactivity with formaldehyde, dependence of optical density on ionic strength, broad temperature-absorbance profile, and lack of molar equivalence of the purine and pyrimidine bases. The DNA has a molecular weight of 1.8 × 106 daltons, an S°20 of 24.6 in SSC (0.15 m NaCl plus 0.015 m sodium citrate), and a buoyant density of 1.726 g/cc in CsCl. Electron microscopy showed the molecule to be circular. S13 replicative-form DNA was shown to be a double-stranded, circular molecule with a molecular weight of 3.5 × 106 daltons, an S[ill] of 20.7 in SSC, and a buoyant density in CsCl of 1.710 g/cc. The finding that S13 DNA is slightly more pyrimidine-rich than X174 DNA but is indistinguishable by all other parameters supports the close genetic relationship between the two bacteriophages.  相似文献   

2.
Recent genome-wide (GW) scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value=6.1×10−8 and rs910316 in TMED10, P-value=1.4×10−7) and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value=3×10−7 and rs849141 in JAZF1, P-value=3.2×10−11). One locus (rs1182188 at GNA12) identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk) and lower-body (hip axis and femur) skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value=4×10−5 and rs6817306 in LCORL, P-value=4×10−4), hip axis length (including rs6830062 at LCORL, P-value=4.8×10−4 and rs4911494 at UQCC, P-value=1.9×10−4), and femur length (including rs710841 at PRKG2, P-value=2.4×10−5 and rs10946808 at HIST1H1D, P-value=6.4×10−6). Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.  相似文献   

3.
To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N=38,580) informative for adult waist circumference (WC) and waist–hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P=1.9×10−11) and MSRA (WC, P=8.9×10−9). A third locus, near LYPLAL1, was associated with WHR in women only (P=2.6×10−8). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.  相似文献   

4.
β-Carotene biochemistry is a fundamental process in mammalian biology. Aberrations either through malnutrition or potentially through genetic variation may lead to vitamin A deficiency, which is a substantial public health burden. In addition, understanding the genetic regulation of this process may enable bovine improvement. While many bovine QTL have been reported, few of the causative genes and mutations have been identified. We discovered a QTL for milk β-carotene and subsequently identified a premature stop codon in bovine β-carotene oxygenase 2 (BCO2), which also affects serum β-carotene content. The BCO2 enzyme is thereby identified as a key regulator of β-carotene metabolism.THE metabolism of β-carotene to form vitamin A is nutritionally important, and vitamin A deficiency remains a significant public health burden. Genetic variation may underlie individual differences in β-carotene metabolism and contribute to the etiology of vitamin A deficiency. Within an agricultural species, genetic variation provides opportunity for production improvements, disease resistance, and product specialization options. We have previously shown that natural genetic variation can be successfully used to inform bovine breeding decisions (Grisart et al. 2002; Blott et al. 2003). Despite numerous reports of quantitative trait loci (QTL), few causative mutations have been identified. We discovered a QTL for milk β-carotene content and report here the identification of a mutation in the bovine β-carotene oxygenase 2 (BCO2) gene responsible for this QTL. The mutation, which results in a premature stop codon, supports a key role for BCO2 in β-carotene metabolism.The QTL trial consisted of a Holstein-Friesian × Jersey cross in an F2 design and a half-sibling family structure (Spelman et al. 2001). Six F1 sires and 850 F2 female progeny formed the trial herd. To construct the genetic map, the pedigree (including the F1 sires, F1 dams, F2 daughters, and selected F0 grandsires: n = 1679) was genotyped, initially with 237 microsatellite markers, and subsequently, with 6634 SNP markers (Affymetrix Bovine 10K SNP GeneChip). A wide range of phenotypic measures relating to growth and development, health and disease, milk composition, fertility, and metabolism were scored on the F2 animals from birth to 6 years of age.To facilitate the discovery of QTL and genes regulating β-carotene metabolism, milk concentration of β-carotene was measured during week 6 of the animals'' second lactation (n = 651). Using regression methodology in a half-sib model (Haley et al. 1994; Baret et al. 1998), a QTL on bovine chromosome 15 (P < 0.0001; Figure 1A) was discovered. The β-carotene QTL effect on chromosome 15 was also significant (P < 0.0001) at two additional time points, in months 4 and 7 of lactation. Three of the six F1 sire families segregated for the QTL, suggesting that these three F1 sires would be heterozygous for the QTL allele (“Q”). To further define the most likely region within the QTL that would harbor the causative mutation, we undertook association mapping, using the 225 SNP markers that formed the chromosome 15 genetic map (Figure 1A). One SNP (“PAR351319”) was more closely associated with the β-carotene phenotype than any other marker (P = 2.522E−18). This SNP was located beneath the QTL peak. Further, the SNP was heterozygous in the three F1 sires that segregated for the QTL, and homozygous in the remaining three sires. On this basis, we hypothesized that the milk β-carotene phenotype would differ between animals on the basis of the genotype of SNP PAR351319.Open in a separate windowFigure 1.—Discovery of BCO2 mutation affecting milk β-carotene concentration. (A) The β-carotene QTL on bovine chromosome 15 (P < 0.0001) is shown by the red line. The maximum F-value at 21 cM was 7.15. The 95% confidence interval is shown by the shaded box. The association of each marker with milk β-carotene is shown by the blue dots, and the association of the BCO2 genotype is shown by the green diamond. A total of 233 informative markers (8 microsatellite markers and 225 single nucleotide polymorphisms) were included on the genetic map for BTA15. QTL detection was conducted using regression methodology in a line of descent model (Haley et al. 1994) and a half-sib model (Baret et al. 1998). Threshold levels were determined at the chromosomewide level using permutation testing (Churchill and Doerge 1998) and confidence intervals estimated using bootstrapping (Visscher et al. 1996). (B) The haplotypes of 10 representative animals for “QQ” and “qq” are shown for the SNP markers encompassing the SNP (“PAR351319”) most closely associated with the milk β-carotene phenotype. Light and dark gray boxes represent homozygous SNPs, while white boxes represent heterozygous SNPs. The genes present within the defined region are also shown. (C) The mutation in the bovine BCO2 gene is shown. The structure of the BCO2 gene is indicated by the horizontal bar, with vertical bars representing exons 1–12. The A > G mutation in exon 3 (red) causes a premature termination codon at amino acid position 80. (D) The mean concentration of β-carotene in the milk fat of “QQ,” “Qq,” and “qq” cows is shown. β-Carotene was measured by absorbance at 450 nm as previously described (Winkelman et al. 1999). Data are means ± SEM. The statistical significance was determined using ANOVA (***P < 0.0001; n = 651).We then made the following assumptions: that the effect of the QTL was additive, that the Q allele was present in the dam population, allowing the occurrence of homozygous (“QQ”) offspring, and that the QTL was caused by a single mutation, acting with a dominant effect on the milk β-carotene phenotype. Haplotypes encompassing the PAR351319 SNP were determined in the F2 offspring. A comparison of the phenotypic effect of homozygous Q, heterozygous and homozygous q individuals revealed that indeed, animals with the “QQ” genotype had a higher concentration of milk β-carotene than animals with the “qq” genotype (Figure 1D). We predicted that the region of homozygosity was likely to contain the causative gene and mutation. The extent of this region and the candidate genes contained within it are shown in Figure 1B. A total of 10 genes with known function, including BCO2, were located within the region. This information, combined with knowledge of the role BCO2 plays in β-carotene metabolism in other species (Kiefer et al. 2001), made BCO2 a good positional candidate for the QTL. We therefore sequenced the entire coding region (12 exons, NC_007313.3) of the BCO2 gene in each of the six F1 sires. An A > G mutation, which was heterozygous in the three F1 sires that segregated for the QTL, was discovered in exon three, 240 bp from the translation initiation site (Figure 1C). The three remaining sires were homozygous for the G allele, which encodes the 530-amino-acid BCO2 protein (NP_001101987). The A allele creates a premature stop codon resulting in a truncated protein of 79 amino acids. To determine whether this mutation was associated with the QTL, the remainder of the pedigree was genotyped. The BCO2 genotype was significantly associated with the milk β-carotene phenotype (P = 8.195E−29) The AA genotype (referred to as BCO2−/−) was present in 3.4% (n = 28) of the F2 population. The AG and GG genotypes (subsequently referred to as BCO2−/+ and BCO2+/+, respectively) were present in 32.8% (n = 269) and 63.8% (n = 523), respectively, of the F2 population.The effect of the premature stop codon on milk β-carotene content was striking. BCO2−/− cows produced milk with 78 and 55% more β-carotene than homozygous (GG) and heterozygous (AG) wild-type animals, respectively (P < 0.0001; Figure 2A). Consequently, the yellow color of the milk fat varied greatly (Figure 2B). The genotype effect on milk β-carotene content was similar at the other two time points measured during lactation (78 and 68% more β-carotene in milk from BCO2−/− cows compared to BCO2+/+ cows; data not shown).Open in a separate windowFigure 2.—Effect of BCO2 genotype on milk β-carotene content. (A) The mean concentration of β-carotene in the milk fat of BCO2−/−, BCO2−/+, and BCO2+/+ cows is shown. β-Carotene was measured by absorbance at 450 nm as previously described (Winkelman et al. 1999). Data are means ± SEM. The statistical significance was determined using ANOVA (***P < 0.0001; n = 651). (B) The effect of the BCO2 genotype on milk fat color is illustrated.No adverse developmental or health affects as a result of the A allele were observed at any stage throughout the lifespan of the animals. The BCO2−/− cows were fertile and milk yield was normal throughout lactation. Interestingly, quantitative real-time PCR showed fourfold lower levels of the BCO2 mRNA in liver tissue from BCO2−/− cows (data not shown).β-Carotene and vitamin A (retinol) concentrations were also measured in serum, liver, and adipose tissue samples, and vitamin A concentration was measured in milk samples from 14 F2 cows of each genotype. Serum β-carotene concentration was higher in BCO2−/− cows compared to the heterozygous and homozygous wild-type cows (P = 0.003; Figure 3A). Thus, the effect of the mutation on β-carotene concentration was similar for both milk and serum, showing that this effect was not confined to the mammary gland. Vitamin A concentration was higher in serum from BCO2−/− cows (P = 0.001; Figure 3B); however, the concentration did not differ in milk (13.1 μg/g fat vs. 14.1 μg/g fat for BCO2−/− and BCO2+/+ cows, respectively; P > 0.1). Liver β-carotene concentration did not differ between genotype groups (Figure 3C), but liver vitamin A was lower in BCO2−/− cows compared to BCO2+/+ cows (P < 0.03; Figure 3D). β-Carotene and vitamin A concentration did not differ between the genotype groups in adipose tissue (data not shown), suggesting tissue-specific effects of the BCO2 enzyme.Open in a separate windowFigure 3.—Effect of the BCO2 genotypes on concentration of β-carotene (A and C), and retinol (B and D), in serum (A and B), and liver (C and D). Subcutaneous adipose tissue biopsies (∼500 mg tissue), liver biopsies (∼100 mg tissue), and serum samples (10 ml) were taken from a subset of 42 cows (14 animals each BCO2−/−, BCO2−/+, and BCO2+/+ genotypes). β-Carotene and retinol measurements were determined using HPLC with commercial standards, on the basis of a published method (Hulshof et al. 2006). Data shown are means ± SEM. Significant differences are indicated by asterisks (*P < 0.05; **P < 0.01; ANOVA, n = 14 per genotype).While previous studies have shown a key role for β-carotene 15, 15′ monooxygenase (BCMO1) in catalyzing the symmetrical cleavage of β-carotene to vitamin A (von Lintig and Vogt 2000; von Lintig et al. 2001; Hessel et al. 2007) similar evidence for the role of the BCO2 enzyme in β-carotene metabolism is lacking. The physiological relevance of BCO2 has therefore been a topic of debate (Wolf 1995; Lakshman 2004; Wyss 2004). BCO2 mRNA and protein have been detected in several human tissues (Lindqvist et al. 2005), and the in vitro cleavage of β-carotene to vitamin A has been demonstrated (Kiefer et al. 2001; Hu et al. 2006). Our results provide in vivo evidence for BCO2-mediated conversion of β-carotene to vitamin A. BCO2−/− cows had more β-carotene in serum and milk and less vitamin A in liver, the main storage site for this vitamin.Our results show that a simple genetic test will allow the selection of cows for milk β-carotene content. Thus, milk fat color may be increased or decreased for specific industrial applications. Market preference for milk fat color varies across the world. Further, β-carotene enriched dairy foods may assuage vitamin A deficiency. Milk may be an ideal food for delivery of β-carotene, which is fat soluble and most efficiently absorbed in the presence of a fat component (Ribaya-Mercado 2002).In conclusion, we have discovered a naturally occurring premature stop codon in the bovine BCO2 gene strongly suggesting a key role of BCO2 in β-carotene metabolism. This discovery has industrial applications in the selection of cows producing milks with β-carotene content optimized for specific dairy products or to address a widespread dietary deficiency. More speculatively, it would be interesting to investigate possible effects of BCO2 variation in humans on the etiology of vitamin A deficiency.  相似文献   

5.
Polyunsaturated fatty acids (PUFA) have a role in many physiological processes, including energy production, modulation of inflammation, and maintenance of cell membrane integrity. High plasma PUFA concentrations have been shown to have beneficial effects on cardiovascular disease and mortality. To identify genetic contributors of plasma PUFA concentrations, we conducted a genome-wide association study of plasma levels of six omega-3 and omega-6 fatty acids in 1,075 participants in the InCHIANTI study on aging. The strongest evidence for association was observed in a region of chromosome 11 that encodes three fatty acid desaturases (FADS1, FADS2, FADS3). The SNP with the most significant association was rs174537 near FADS1 in the analysis of arachidonic acid (AA; p=5.95×10−46). Minor allele homozygotes had lower AA compared to the major allele homozygotes and rs174537 accounted for 18.6% of the additive variance in AA concentrations. This SNP was also associated with levels of eicosadienoic acid (EDA; p=6.78×10−9) and eicosapentanoic acid (EPA; p=1.07×10−14). Participants carrying the allele associated with higher AA, EDA, and EPA also had higher low-density lipoprotein (LDL-C) and total cholesterol levels. Outside the FADS gene cluster, the strongest region of association mapped to chromosome 6 in the region encoding an elongase of very long fatty acids 2 (ELOVL2). In this region, association was observed with EPA (rs953413; p=1.1×10−6). The effects of rs174537 were confirmed in an independent sample of 1,076 subjects participating in the GOLDN study. The ELOVL2 SNP was associated with docosapentanoic and DHA but not with EPA in GOLDN. These findings show that polymorphisms of genes encoding enzymes in the metabolism of PUFA contribute to plasma concentrations of fatty acids.  相似文献   

6.
Refractive error is a highly heritable quantitative trait responsible for considerable morbidity. Following an initial genome-wide linkage study using microsatellite markers, we confirmed evidence for linkage to chromosome 3q26 and then conducted fine-scale association mapping using high-resolution linkage disequilibrium unit (LDU) maps. We used a preliminary discovery marker set across the 30-Mb region with an average SNP density of 1 SNP/15 kb (Map 1). Map 1 was divided into 51 LDU windows and additional SNPs were genotyped for six regions (Map 2) that showed preliminary evidence of multi-marker association using composite likelihood. A total of 575 cases and controls selected from the tails of the trait distribution were genotyped for the discovery sample. Malecot model estimates indicate three loci with putative common functional variants centred on MFN1 (180,566 kb; 95% confidence interval 180,505–180, 655 kb), approximately 156 kb upstream from alternate-splicing SOX2OT (182,595 kb; 95% CI 182,533–182,688 kb) and PSARL (184,386 kb; 95% CI 184,356–184,411 kb), with the loci showing modest to strong evidence of association for the Map 2 discovery samples (p<10−7, p<10−10, and p=0.01, respectively). Using an unselected independent sample of 1,430 individuals, results replicated for the MFN1 (p=0.006), SOX2OT (p=0.0002), and PSARL (p=0.0005) gene regions. MFN1 and PSARL both interact with OPA1 to regulate mitochondrial fusion and the inhibition of mitochondrial-led apoptosis, respectively. That two mitochondrial regulatory processes in the retina are implicated in the aetiology of myopia is surprising and is likely to provide novel insight into the molecular genetic basis of common myopia.  相似文献   

7.
《PloS one》2012,7(9)

Rationale

Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies.

Objectives

To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations.

Methods

The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5x10−8) and three variants reported as suggestive (P<5×10−7). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever.

Main Results

We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4×10−9). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (P Stage1+Stage2 = 1.1x10−9), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (P Stage1+Stage2 = 1.1x10−8), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status.

Conclusions

Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma.  相似文献   

8.
Smith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol. Impaired SC5D activity leads to a similar deficiency of cholesterol but an accumulation of lathosterol. Although the genetic and biochemical causes underlying both syndromes are known, the pathophysiological processes leading to the developmental defects remain unclear. To study the pathophysiological mechanisms underlying SLOS and lathosterolosis neurological symptoms, we performed quantitative proteomics analysis of SLOS and lathosterolosis mouse brain tissue and identified multiple biological pathways affected in Dhcr7Δ3–5/Δ3–5 and Sc5d−/− E18.5 embryos. These include alterations in mevalonate metabolism, apoptosis, glycolysis, oxidative stress, protein biosynthesis, intracellular trafficking, and cytoskeleton. Comparison of proteome alterations in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− brain tissues helps elucidate whether perturbed protein expression was due to decreased cholesterol or a toxic effect of sterol precursors. Validation of the proteomics results confirmed increased expression of isoprenoid and cholesterol synthetic enzymes. This alteration of isoprenoid synthesis may underlie the altered posttranslational modification of Rab7, a small GTPase that is functionally dependent on prenylation with geranylgeranyl, that we identified and validated in this study. These data suggested that although cholesterol synthesis is impaired in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− embryonic brain tissues the synthesis of nonsterol isoprenoids may be increased and thus contribute to SLOS and lathosterolosis pathology. This proteomics study has provided insight into the pathophysiological mechanisms of SLOS and lathosterolosis, and understanding these pathophysiological changes will help guide clinical therapy for SLOS and lathosterolosis.Smith-Lemli-Opitz syndrome (SLOS1; Online Mendelian Inheritance in Man 270400) is a multiple malformation syndrome with cognitive and behavioral deficiencies due to an inborn error of cholesterol synthesis. Typical findings in SLOS include dysmorphic facial features, limb defects, genital anomalies, growth retardation, cognitive disabilities, behavioral problems, and autistic features (for a review, see Ref. 1). The incidence of SLOS has been estimated to be on the order of 1/20,000–1/70,000 (1). SLOS is an autosomal recessive disorder caused by mutation of the 7-dehydrocholesterol reductase gene (DHCR7) (24). DHCR7 catalyzes the final step in the Kandutsch-Russel cholesterol biosynthetic pathway. Impaired DHCR7 activity results in increased 7-dehydrocholesterol (7DHC) and decreased cholesterol levels (Fig. 1A). Lathosterolosis is a rare “SLOS-like” malformation syndrome due to mutations of lathosterol 5-desaturase (SC5D) (57). SC5D catalyzes the conversion of lathosterol to 7DHC. Thus, in lathosterolosis, like SLOS, there is a deficiency of cholesterol. However, the accumulating precursor sterol is lathosterol rather than 7DHC (Fig. 1A). Because of its rarity and the fact that all known cases of lathosterolosis were ascertained due to similarity with SLOS, the phenotypic spectrum of lathosterolosis has not been defined.Open in a separate windowFig. 1.Representative 2-DE maps of SLOS and lathosterolosis mouse brain proteins. A, SLOS and lathosterolosis are inborn errors of cholesterol synthesis. SLOS is caused by mutations in the DHCR7 gene. DHCR7 catalyzes the final step in cholesterol synthesis. Lathosterolosis is caused by mutations of the SC5D gene. Cholesterol levels are decreased in both SLOS and lathosterolosis, but the accumulating precursor sterol differs. In SLOS, 7DHC accumulates, whereas in lathosterolosis, the accumulating sterol is lathosterol. B, representative 2-DE maps of control (Dhcr7+/+ and Sc5d+/+), Dhcr7Δ3–5/Δ3–5, and Sc5d−/− mouse brain proteins. Eighty micrograms of the pooled protein sample from Dhcr7+/+, Dhcr7Δ3–5/Δ3–5, Sc5d+/+, and Sc5d−/− embryonic mouse brain tissues were separated on a pH 3–10 nonlinear IPG strip followed by electrophoretic separation on a 12% SDS-polyacrylamide gel. Acidic pH is to the left, and increased molecular mass is at the top. Compared with Dhcr7+/+ mouse brains, the protein spots with significantly decreased or increased expression in Dhcr7Δ3–5/Δ3–5 mouse brains are marked in Dhcr7+/+ and Dhcr7Δ3–5/Δ3–5 mouse brain 2-DE maps, respectively. Compared with Sc5d+/+ mouse brains, the protein spots with significantly decreased or increased expression in Sc5d−/− mouse brains are marked in Sc5d+/+ and Sc5d−/− mouse brain 2-DE maps, respectively. Supplemental Table 2 provides detailed information on the differentially expressed protein spots.Although the genetic and biochemical causes of SLOS are defined, the pathophysiological mechanisms contributing to specific malformations have not been delineated. The classic paradigm for the pathogenesis of an inborn error of metabolism includes the accumulation of a toxic precursor and/or deficiency of an essential product. In the case of SLOS, the observed defects are postulated to be caused, either singly or in combination, by cholesterol deficiency or the accumulation of 7DHC (8, 9).Cholesterol is an essential lipid with multiple critical functions. In addition to being a structural lipid in membranes and myelin, cholesterol is the precursor for bile acid, steroid hormone, neuroactive steroid, and oxysterol synthesis. In cellular membranes, cholesterol rafts are microdomains that function in receptor-mediated signal transduction. Functional defects in IgE receptor-mediated mast cell degranulation and cytokine production (10), N-methyl-d-aspartate receptor function (11), and serotonin 1A receptor ligand binding (12, 13) have been reported in SLOS. The altered sterol composition in SLOS affects the physiochemical properties and function of lipid rafts. Membrane domains incorporating 7DHC differ from those containing only cholesterol in protein composition (14), packing (15), and stability (1618). Substitution of 7DHC for cholesterol also decreases membrane bending rigidity (19). In addition, model membranes mimicking SLOS membranes have been reported to exhibit atypical membrane organization (20) and curvature (19). These alterations may have functional consequences. Depletion of cholesterol from hippocampal membranes and replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin 1A receptor despite the recovery of the overall membrane order (12). Cholesterol is also necessary for maturation and function of the hedgehog family of morphogens during embryonic development, and several mechanisms by which sonic hedgehog signaling might be impaired in SLOS have been proposed (2123).To understand the pathophysiological processes underlying cognitive defects found in SLOS, we need to consider the potential detrimental effects of decreased cholesterol/functional sterol levels versus the potential toxic effects of increased 7DHC. To give insight into pathological effects due to cholesterol deficiency and precursor accumulation, we have produced mouse models deficient in either 7-dehydrocholesterol reductase (11) or lathosterol reductase (6) activity (Dhcr7Δ3–5/Δ3–5 and Sc5d−/−, respectively). Although the two models are similar in many respects, significant differences exist. Dhcr7 pups have relatively few physical malformations other than a low frequency of cleft palate but die during the 1st day of life due to failure to feed (11). In contrast Sc5d mutant embryos are stillborn and have multiple developmental malformations (6). In addition, although secretory granule formation is altered in both models, consistent with differing physiochemical properties of the two precursor sterols, the specific changes differ between the two models (19). For these reasons, a comparison of the two models will provide insight into common mechanisms that are likely due to cholesterol/sterol deficiency and syndrome-specific mechanisms that are due to specific effects of one of the two precursors.We now report the use of two-dimensional electrophoresis (2-DE) mass spectrometry proteomics analysis to identify proteins with altered expression in brain tissue from both Dhcr7 and Sc5d mutants with the goal of identifying novel pathophysiological mechanisms contributing to the neurological deficits in these two inborn errors of cholesterol synthesis. Because our focus was on identifying processes that could contribute to abnormal neurological development, our analysis was focused on brain tissue from E18.5 embryos. This embryonic age was selected because the biochemical defect increases with embryonic age (6, 11), and it is the latest time point for which we could obtain viable tissue for both mutants. Western blot analysis was used to validate selected individual proteins and pathways. Functional annotation suggested that alterations in mevalonate metabolism, glycolysis, oxidative stress, apoptosis, protein biosynthesis, intracellular trafficking, and cytoskeleton may contribute to the pathology of inborn errors of cholesterol synthesis. In addition, our data are consistent with the hypothesis that both cholesterol deficiency and increased precursor sterol levels contribute to SLOS and lathosterolosis pathology.  相似文献   

9.
Glycogen synthase kinase-3β (GSK3β) is a multifunctional kinase whose inhibition is known to limit myocardial ischemia–reperfusion injury. However, the mechanism mediating this beneficial effect still remains unclear. Mitochondria and sarco/endoplasmic reticulum (SR/ER) are key players in cell death signaling. Their involvement in myocardial ischemia–reperfusion injury has gained recognition recently, but the underlying mechanisms are not yet well understood. We questioned here whether GSK3β might have a role in the Ca2+ transfer from SR/ER to mitochondria at reperfusion. We showed that a fraction of GSK3β protein is localized to the SR/ER and mitochondria-associated ER membranes (MAMs) in the heart, and that GSK3β specifically interacted with the inositol 1,4,5-trisphosphate receptors (IP3Rs) Ca2+ channeling complex in MAMs. We demonstrated that both pharmacological and genetic inhibition of GSK3β decreased protein interaction of IP3R with the Ca2+ channeling complex, impaired SR/ER Ca2+ release and reduced the histamine-stimulated Ca2+ exchange between SR/ER and mitochondria in cardiomyocytes. During hypoxia reoxygenation, cell death is associated with an increase of GSK3β activity and IP3R phosphorylation, which leads to enhanced transfer of Ca2+ from SR/ER to mitochondria. Inhibition of GSK3β at reperfusion reduced both IP3R phosphorylation and SR/ER Ca2+ release, which consequently diminished both cytosolic and mitochondrial Ca2+ concentrations, as well as sensitivity to apoptosis. We conclude that inhibition of GSK3β at reperfusion diminishes Ca2+ leak from IP3R at MAMs in the heart, which limits both cytosolic and mitochondrial Ca2+ overload and subsequent cell death.Glycogen synthase kinase-3 (GSK3) was originally identified as a phosphorylating kinase for glycogen synthase.1, 2 It has two isoforms, α and β, that possess strong homology in their kinase domains with, however, distinct functions.3 GSK3 is constitutively active but it can be inhibited by phosphorylation on serine 21 (Ser21) for GSK3α and Ser9 for GSK3β.4 In the heart, GSK3β has several important roles in cardiac hypertrophy5 and ischemia–reperfusion (IR) injury.6 Accumulating evidence indicates that phospho-Ser9-GSK3β-mediated cytoprotection is achieved by an increased threshold for permeability transition pore (PTP) opening.6, 7, 8, 9 The mechanism by which GSK3β delays PTP opening still remains unclear. It has been reported that GSK3β could interact with ANT at the inner mitochondrial membrane in the heart9 and/or to phosphorylate voltage-dependent anion channel (VDAC) and cyclophilin D (CypD) in cancer cells.10, 11 GSK3β also has other proposed mechanisms of action, including a poorly characterized role in calcium (Ca2+) homeostasis regulation12 and protein–protein interactions,9 as well as functions in different subcellular fractions such as the nucleus, cytosol and mitochondria.13Reperfusion is the most powerful intervention to salvage ischemic myocardium. However, it can also paradoxically lead to cardiomyocyte injury and death.14 One of the main actors of this lethal reperfusion injury is cellular Ca2+ overload,15 which results in part from excessive sarco/endoplasmic reticulum (SR/ER) Ca2+ release and Ca2+ influx through the plasma membrane (e.g. through L-type Ca2+channel and NCX (sodium-calcium exchanger)).16 Although ryanodine receptors (RyRs) are the major cardiac SR/ER Ca2+-release channels involved in excitation–contraction coupling (ECC)17 and ischemia–reperfusion (IR) injury,18 recent studies reported an increasing role for inositol 1,4,5-trisphosphate receptors (IP3Rs) Ca2+-release channels in the modulation of ECC and cell death.19, 20 Ca2+-handling proteins of ER and mitochondria are highly concentrated at mitochondria-associated ER membranes (MAMs), providing a direct and proper mitochondrial Ca2+ signaling, including VDAC, Grp75 and IP3R1.20, 21, 22Here, we provide evidence that, following IR, a fraction of cellular GSK3β is localized at the SR/ER and MAMs. At the MAMs interface, GSK3β can specifically interact and regulate the protein composition of the IP3R Ca2+ channeling complex and modulate Ca2+ transfer between SR/ER and mitochondria. These findings support a novel mechanism of action of GSK3β in cell death process during reperfusion injury.  相似文献   

10.
In this study, we examine the telomeric functions of the mammalian Mre11 complex by using hypomorphic Mre11 and Nbs1 mutants (Mre11ATLD1/ATLD1 and Nbs1ΔB/ΔB, respectively). No telomere shortening was observed in Mre11ATLD1/ATLD1 cells after extensive passage through culture, and the rate of telomere shortening in telomerase-deficient (TertΔ/Δ) Mre11ATLD1/ATLD1 cells was the same as that in TertΔ/Δ alone. Although telomeres from late-passage Mre11ATLD1/ATLD1 TertΔ/Δ cells were as short as those from TertΔ/Δ, the incidence of telomere fusions was reduced. This effect on fusions was also evident upon acute telomere dysfunction in Mre11ATLD1/ATLD1 and Nbs1ΔB/ΔB cells rendered Trf2 deficient by cre-mediated TRF2 inactivation than in wild-type cells. The residual fusions formed in Mre11 complex mutant cells exhibited a strong tendency toward chromatid fusions, with an almost complete bias for fusion of telomeres replicated by the leading strand. Finally, the response to acute telomere dysfunction was strongly impaired by Mre11 complex hypomorphism, as the formation of telomere dysfunction-induced DNA damage foci was reduced in both cre-infected Mre11ATLD1/ATLD1 Trf2F/Δ and Nbs1ΔB/ΔB Trf2F/F cells. These data indicate that the Mre11 complex influences the cellular response to telomere dysfunction, reminiscent of its influence on the response to interstitial DNA breaks, and suggest that it may promote telomeric DNA end processing during DNA replication.The Mre11 complex (in mammals, Mre11, Rad50, and Nbs1) plays a central role in the cellular response to DNA double-strand breaks (DSBs). The Mre11 complex acts as a DSB sensor, promoting the activation of ATM-dependent DNA damage signaling pathways, DNA repair, and apoptosis. In addition, the complex plays a direct role in recombinational DNA repair, influencing both homologous recombination and nonhomologous end joining (NHEJ) (39). The Mre11 complex''s diverse functions in the DNA damage response are likely predicated on its physical association with chromatin. In this regard, one of the least-understood roles of the Mre11 complex in mammals is its association with telomeres.In mammals, telomeric DNA consists of double-stranded TTAGGG repeats ending in a single-stranded 3′ G overhang, and an array of telomere binding proteins called the shelterin complex that function to prevent telomeres from being recognized as DNA breaks (33). DNA of the overhang invades the double-stranded telomeric repeat sequence to form a t-loop structure (14, 32). The formation of the t-loop requires the telomere protection and remodeling proteins that make up the shelterin complex (7), and these may also contribute to telomere length regulation by preventing telomerase access to chromosomal ends.Data regarding the role of the Mre11 complex at the telomere have implicated the Mre11 complex in several aspects of telomere maintenance and function. For example, it has been suggested that the Mre11 complex may promote formation of the 3′ telomeric overhang by influencing 5′-to-3′ resection of newly replicated chromosome ends (6). In Saccharomyces cerevisiae, the Mre11 complex recruits the ATM orthologue, Tel1, which is in turn required to recruit telomerase (12, 45). Consequently, Mre11 complex deficiency results in telomere shortening. In mammals, recruitment of telomerase is thought to be regulated primarily by the telomeric protein components TRF1, TPP1, and POT1 (24, 46, 53). However, telomere shortening has also been noted to occur in cell lines from Nijmegen breakage syndrome (NBS) patients in which a hypomorphic Nbs1 allele is expressed, leading to the suggestion that the Mre11 complex may also promote telomerase function in mammals (36). The Mre11 complex associates with telomeres through its interaction with the shelterin component Trf2, apparently in a cell cycle-dependent manner (47, 54). The significance of this physical association is unclear, as genetic depletion of Rad50, a component of the Mre11 complex, does not phenocopy depletion of Trf2 in most respects (1).To examine the function of the Mre11 complex at mammalian telomeres, we established mouse embryonic fibroblasts (MEFs) derived from a mouse expressing the hypomorphic Mre11ATLD1 allele, crossed to telomerase deficient TertΔ/Δ mice (23, 42), and assessed the rate of telomere shortening. Mre11 complex hypomorphism in MEFs did not affect telomere length, irrespective of telomerase status. In Mre11ATLD1/ATLD1 TertΔ/Δ cells, the fusion of eroded telomeres was reduced compared to TertΔ/Δ cells with telomeres shortened to the same extent, suggesting that the Mre11 complex is involved in the response to critically short telomeres. This interpretation was supported by data obtained using a conditional Trf2 allele to generate acute telomere dysfunction in Mre11ATLD1/ATLD1 and Nbs1ΔB/ΔB cells. Collectively the data support a role for the Mre11 complex in the recognition and signaling of dysfunctional telomeres. The character of fusions arising in cre-infected Mre11ATLD1/ATLD1 Trf2F/Δ and Nbs1ΔB/ΔB Trf2F/F cells further suggests that the Mre11 complex may influence the processing of chromosome ends following DNA replication en route to t-loop formation.  相似文献   

11.
12.
13.
Harpins, such as HrpN of Erwinia amylovora, are extracellular glycine-rich proteins that elicit the hypersensitive reaction (HR). We identified hrpW of E. amylovora, which encodes a protein similar to known harpins in that it is acidic, rich in glycine and serine, and lacks cysteine. A putative HrpL-dependent promoter was identified upstream of hrpW, and Western blot analysis of hrpL mutants indicated that the production of HrpW is regulated by hrpL. HrpW is secreted via the Hrp (type III) pathway based on analysis of wild-type strains and hrp secretion mutants. When infiltrated into plants, HrpW induced rapid tissue collapse, which required active plant metabolism. The HR-eliciting activity was heat stable and protease sensitive. Thus, we concluded that HrpW is a new harpin. HrpW of E. amylovora consists of two domains connected by a Pro and Ser-rich sequence. A fragment containing the N-terminal domain was sufficient to elicit the HR. Although no pectate lyase activity was detected, the C-terminal region of HrpW is homologous to pectate lyases of a unique class, suggesting that HrpW may be targeted to the plant cell wall. Southern analysis indicated that hrpW is conserved among several Erwinia species, and hrpW, provided in trans, enhanced the HR-inducing ability of a hrpN mutant. However, HrpW did not increase the virulence of a hrpN mutant in host tissue, and hrpW mutants retained the wild-type ability to elicit the HR in nonhosts and to cause disease in hosts.Most gram-negative plant-pathogenic bacteria contain clusters of genes termed hrp that are required for elicitation of a rapid localized defense response called the hypersensitive reaction (HR) in incompatible plants and that are required for pathogenicity in susceptible plants (1). Proteins encoded by hrp genes are involved in the regulation of the expression of other hrp genes and in a specialized secretion process called the Hrp or type III pathway (9). Harpins, a major class of proteins that travel the pathway (including HrpN of Erwinia species, HrpZ of Pseudomonas syringae, and PopA of Ralstonia solanacearum), elicit the HR when infiltrated into the apoplast of leaf tissue (reference 1 and references therein). They are heat stable, rich in Gly and/or Ser, lack Cys, and differ in their primary sequences. In Erwinia amylovora, mutation of hrpN results in substantially reduced Hrp phenotype (4, 6, 45).E. amylovora causes the devastating fire-blight disease on many rosaceous plants, such as apple, pear, and cotoneaster. Cosmids pCPP430 and pCPP450, which harbor the hrp gene cluster of E. amylovora Ea321, enable Escherichia coli to elicit the HR in tobacco (7). The region of pCPP430 essential for the Hrp phenotype encodes two-component regulatory proteins, a ς54 enhancer-binding protein, a sigma factor, secretory proteins, and the HrpN harpin (11, 27, 4245). In contrast, the locus next to hrp genes, designated dsp, contains pathogenicity genes, and P. syringae pv. glycinea containing the E. amylovora dsp locus causes the HR rather than disease in soybean plants (10). This locus encodes a Hrp-secreted protein and a probable chaperone of the secreted protein (8, 10, 17).Additional HR elicitors in E. amylovora have been suspected based on the HR-variable phenotype of E. amylovora hrpN mutants (references 4 and 6; see also Table Table1).1). We report here the identification and characterization of a novel harpin of E. amylovora, HrpW, the C-terminal domain of which surprisingly is homologous to fungal pectate lyases (PLs). We show that HrpW, the production of which is controlled by hrpL, is delivered by the E. amylovora Hrp pathway. HrpW elicits the HR in plants, and the HR necrosis is not due to the potential PL activity of HrpW. Finally, we provide evidence that HrpW is not required for the HR and pathogenicity, although when overexpressed it enhances the HR-eliciting activity of a hrpN mutant. Preliminary reports on E. amylovora HrpW have been made (28, 29), and, while this article was under revision, a paper describing HrpW from E. amylovora CFBP1430 (16) appeared.

TABLE 1

HR induction and virulence of E. amylovora Ea321 and mutant derivativesa
Strain of E. amylovoraGenotypeHR rating of tobacco leafb (A/B/C)Disease rating of immature pear fruit treated withc:
No. of bacteriad (CFU/pear half)
5 × 107 CFU/ml (A/B/C)5 × 106 CFU/ml (A/B/C)5 × 105 CFU/ml (A/B/C)
Ea321RphrpN+hrpW+0/0/6 a0/0/10 e0/0/10 i0/0/10 m1.4 × 1011 ± 9.2 × 1010
Ea321-K49hrpL6/0/0 b10/0/0 h10/0/0 lNT1.3 × 108 ± 4.2 × 107
Ea321-T5hrpN2/4/0 b4/6/0 g5/5/0 kl8/2/0 n9.9 × 108 ± 1.2 × 109
Ea321-T5(pCPP1084)hrpN (hrpN+)0/2/4 a0/7/3 f1/6/3 j4/6/0 n7.7 × 109 ± 6.2 × 109
Ea321-G204hrpW0/0/6 a0/0/10 e0/0/10 i0/0/10 m1.3 × 1011 ± 1.1 × 1011
Ea321-T5/G204hrpNhrpW5/1/0 b7/3/0 gh6/4/0 kl8/2/0 n1.4 × 108 ± 6.9 × 107
Ea321-T5/G204(pCPP1012)hrpNhrpW (hrpN+hrpW+)3/3/0 b3/7/0 g2/8/0 jk3/7/0 n4.6 × 108 ± 5.7 × 107
Ea321-T5/G204(pCPP1233)hrpNhrpW (hrpW+)5/1/0 b5/5/0 gh6/4/0 kl8/2/0 n2.4 × 108 ± 2.8 × 108
Open in a separate windowaValues in HR and disease columns indicate the number of leaf panels or pear fruits that were given the rating A, B, or C (defined below). Ratings followed by the same letter within columns do not differ significantly at P = 0.05. bApproximately 100 μl of the bacterial suspensions (ca. 5 × 107 CFU/ml) was infiltrated into each panel of tobacco leaves, and the results were recorded after incubating 3 days at room temperature. A, no HR; B, spotty and sometimes coalescing HR; C, complete HR over the infiltrated area. cPear fruits were cut in half longitudinally, wells approx. 7 mm deep were made in the middle of each pear half using a cork borer (4-mm diameter), and 100 μl of the bacterial suspension (5 × 107, 5 × 106, or 5 × 105 CFU/ml) was put into each. Pear halves were incubated at 28°C for 10 days before the readings were made. A, no ooze, no necrosis; B, clear or cloudy ooze droplets and/or partial necrosis, especially around the well; C, copious ooze and necrosis of the whole pear half. NT, not tested. dBacterial populations were estimated 7 days after inoculation with ca. 5 × 107 CFU/well of each pear half. Two average-looking pear halves from each treatment were chosen for population assay. Each sample was counted twice by diluting with 5 mM KPO4 buffer and spotting 10-μl aliquots on duplicates of Luria agar plates with appropriate antibiotics.   相似文献   

14.
15.
Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson''s disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of dopaminergic neurons and parkinsonism.Parkinson''s disease (PD) is a neurodegenerative disorder characterized by motor symptoms, including bradykinesia and tremor, and a progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc).1, 2 Sigma-1 receptor (σ1R), previously named the opioid receptor sigma-1, is found primarily in motoneurons localized in the brainstem and spinal cord.3 The σ1R is expressed in dopaminergic neurons and astrocytes.4 The σ1R agonist PRE084 has been reported to exert neurorestorative effects on 6-hydroxydopamine (6-OHDA)-induced parkinsonism.4 Using positron emission tomography, the σ1R-binding sites are found to be reduced in the brains of early-phase PD patients.5 However, the influence of σ1R deficiency on the pathogenesis of PD has not yet been reported.Dopamine toxicity is involved in the etiology of PD.6 The σ1R-binding sites on dopaminergic nerve terminals are involved in increasing dopamine release by enhancing N-methyl-d-aspartate receptors (NMDAr).7 The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) metabolized to 1-methyl-4-phenylpyridinium in glial cells selectively impairs dopaminergic neurons in SNpc through disrupting respiratory enzymes and causing oxidative damage.8 The dopamine transporter (DAT), a high-affinity transmembrane protein, is responsible for dopamine reuptake from the synaptic cleft and the transportation of 1-methyl-4-phenylpyridinium into dopaminergic nerve terminals.9 The σ1R is co-expressed with DAT in dopaminergic neurons.4 Furthermore, the low density of DAT has been confirmed in the brains of PD patients.5The activation of σ1R enhances the Ca2+ influx across NMDAr through increasing the phosphorylation of NR2B or the trafficking NMDAr to the plasma membrane.10, 11 The NMDAr NR2B inhibitor can attenuate MPTP- or 6-OHDA-induced parkinsonian symptoms and neurodegeneration.12 The σ1R deficiency has been demonstrated to reduce Aβ-induced neuronal cell death through suppressing NR2B phosphorylation.13 The inflammation is a predominant aspect of PD, manifested by glial activation with the expression of pro-inflammatory mediators.14 Sustained neuro-inflammation can exacerbate the degeneration of dopaminergic neurons.15 The blockade of σ1R has been reported to inhibit methamphetamine-induced astrogliosis.16 Moreover, the 6-OHDA-induced spontaneous rotations or decline of dopaminergic fibers in σ1R knockout mice seem to be less than those in wild-type (WT) mice.4 Paquette et al. reported that the blockade of σ1R could attenuate abnormal involuntary movements induced by 6-OHDA.17In this study, we employed heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice to investigate the influence of σ1R deficiency on MPTP-induced parkinsonism and death of dopaminergic neurons, and the underlying molecular mechanisms. Using the experimental PD models of MPTP-treated σ1R+/− mice and σ1R−/− mice, the present study provides in vivo evidence that the σ1R deficiency through suppressing NMDAr function and DAT expression can attenuate MPTP-induced dopaminergic neurodegeneration and parkinsonism.  相似文献   

16.
17.
18.
Epigenetically inherited aggregates of the yeast prion [PSI+] cause genomewide readthrough translation that sometimes increases evolvability in certain harsh environments. The effects of natural selection on modifiers of [PSI+] appearance have been the subject of much debate. It seems likely that [PSI+] would be at least mildly deleterious in most environments, but this may be counteracted by its evolvability properties on rare occasions. Indirect selection on modifiers of [PSI+] is predicted to depend primarily on the spontaneous [PSI+] appearance rate, but this critical parameter has not previously been adequately measured. Here we measure this epimutation rate accurately and precisely as 5.8 × 10−7 per generation, using a fluctuation test. We also determine that genetic “mimics” of [PSI+] account for up to 80% of all phenotypes involving general nonsense suppression. Using previously developed mathematical models, we can now infer that even in the absence of opportunities for adaptation, modifiers of [PSI+] are only weakly deleterious relative to genetic drift. If we assume that the spontaneous [PSI+] appearance rate is at its evolutionary optimum, then opportunities for adaptation are inferred to be rare, such that the [PSI+] system is favored only very weakly overall. But when we account for the observed increase in the [PSI+] appearance rate in response to stress, we infer much higher overall selection in favor of [PSI+] modifiers, suggesting that [PSI+]-forming ability may be a consequence of selection for evolvability.THE yeast phenotype [PSI+] is characterized by prion aggregates of the protein Sup35. Cells are in either a [psi−] (normal) or [PSI+] state, depending on the absence or presence of the prion aggregates (Figure 1, a and b). Sup35 prion aggregates replicate in a similar fashion to mammalian prions but are cytoplasmic and, as such, the prion state is cytoplasmically inherited (Wickner et al. 1995).Open in a separate windowFigure 1.—Comparison between the three possible modes ([PSI+], genetic mimic, point mutation revertant) of the expression of 3′-UTR sequences in yeast. (a) The normal [psi−] phenotypic state; (b) the [PSI+] prion causes readthrough and low-level expression of 3′-UTRs across multiple genes, appearing at rate mPSI; (c) a genetic mimic of [PSI+] such as the sal3-4 mutant of Sup35 (Eaglestone et al. 1999) appearing at rate mmimic not reversible by the application of guanidine hydrochloride; (d) a point mutation in a single stop codon at rate μpoint, leading to incorporation of formerly 3′-UTR into a single coding sequence. (e) [PSI+] can act as a “stop-gap” mechanism, buying a lineage more time to acquire one or more adaptive stop codon readthrough point mutations. When this genetic assimilation is complete, [PSI+] can revert to [psi−] (Masel and Bergman 2003; Griswold and Masel 2009).When not part of an aggregate, Sup35 helps mediate translation termination in yeast (Stansfield et al. 1995b; Zhouravleva et al. 1995). Sup35 molecules that are incorporated into nonfunctional prion aggregates are presumably not available for translation termination, which can lead to the translation of stop codons by near-cognate tRNAs (Figure 1b) (Tuite and Mclaughlin 1982; Pure et al. 1985; Lin et al. 1986). This partial loss of Sup35 function leads to an increased frequency of readthrough translation of 3′-untranslated regions (3′-UTR) across all genes (Figure 1b). This increase is modest in wild-type yeast, from an average readthrough rate of 0.3% in [psi−] cells up to 1% in [PSI+] cells (Firoozan et al. 1991). Some [PSI+] yeast strains grow faster than [psi−] controls in certain harsh environments, suggesting that readthrough translation of some 3′-UTRs may be adaptive in certain conditions (True and Lindquist 2000; Joseph and Kirkpatrick 2008). This directly shows that [PSI+]-mediated capacitance may increase evolvability in the laboratory. [PSI+]-mediated phenotypes have a complex genetic basis, involving multiple loci (True et al. 2004).As an epigenetically inherited protein aggregate, [PSI+] can easily be lost after some generations (Cox et al. 1980). This returns the lineage to its normal [psi−] state and restores translation fidelity. If a subset of revealed phenotypic variation is adaptive, it may have lost its dependence on [PSI+] by this time (True et al. 2004). This process of genetic assimilation may, for example, involve one or more point mutations in stop codons, increasing readthrough up to 100% (Figure 1e) (Griswold and Masel 2009). This leaves the yeast with a new adaptive trait and with no permanent load of other, deleterious variation.In general, stop codons can be lost either directly through point mutations or indirectly through upstream indels. This leads to novel coding sequence coming from in-frame and out-of-frame 3′-UTRs, respectively. [PSI+] is expected to facilitate only the former, while mutation bias favors the latter. Yeasts show a much higher ratio of in-frame to out-of-frame 3′-UTR incorporation events than mammals do (Giacomelli et al. 2007), confirming a role for [PSI+] in capacitance-mediated evolvability in natural populations.The adaptive evolution both of evolvability in general (Sniegowski and Murphy 2006; Lynch 2007; Pigliucci 2008) and of capacitance in particular (Dickinson and Seger 1999; Wagner et al. 1999; Partridge and Barton 2000; Brookfield 2001; Pal 2001; Meiklejohn and Hartl 2002; Ruden et al. 2003) is highly controversial. In general, any costs of evolvability are borne in the present, while the benefits lie in the future, making it difficult for natural selection to favor an evolvability allele. For example, mutation rates seem to be set according to a trade-off between metabolic cost (favoring higher mutation rates) and the avoidance of deleterious effects (favoring lower mutation rates) (Sniegowski et al. 2000). The fact that mutation creates variation, the ultimate source of evolvability, is merely a fortuitous consequence of the metabolic cost of fidelity.Previous theoretical population genetic studies have, however, suggested that modifier alleles promoting the formation of [PSI+] might, unlike mutator alleles, be favored for their evolvability properties (King and Masel 2007; Masel et al. 2007; Griswold and Masel 2009; Masel and Griswold 2009). These models depend, however, on a number of parameter estimates. In particular, a number of predictions depend on the spontaneous rate of [PSI+] formation (Masel and Griswold 2009).

[PSI+] appearance rates and the fluctuation test:

The most widely cited spontaneous appearance rate for [PSI+] is mPSI ∼ 10−7–10−5, on the basis of experiments by Lund and Cox (1981). This estimate was calculated as the proportion of colonies scored as [PSI+] after growth over multiple generations from a single founding [psi−] clone. If [PSI+] happens to appear in the first generation of growth, this leads to a “jackpot” event with only one switching event, but many [PSI+] colonies. The proportion of colonies scored as [PSI+] therefore yields a systematic overestimation of the [PSI+] appearance rate.Various implementations of the fluctuation test (Luria and Delbrück 1943) can address such effects. The mutation rate experiment is replicated many times using independent populations, and a Luria–Delbrück distribution is fitted to the results across all replicates. In a simulation study, Stewart (1994) examined a number of estimators of the underlying Luria–Delbrück distribution and found that the maximum-likelihood estimator performed the best.Originally developed to study mutation rates, the fluctuation test can also be used for estimating epimutation rates. Fluctuation tests have been used to estimate the rate of gene silencing in Chinese hamster ovary cells (Holliday and Ho 1998) and in the yeast Schizosaccharomyces pombe (Singh and Klar 2002). However, fluctuation tests do not appear to be used routinely for epimutation rate estimates. For example, although the rates of spontaneous appearance and disappearance of [ISP+], a prion-like element in yeast, have been measured using the fluctuation test (Volkov et al. 2002), to the best of our knowledge there are no published estimates of the spontaneous rate of [PSI+] appearance as measured using a fluctuation test. Although results from the fluctuation test can be confounded by reverse epimutation, or back-switching, this is an issue only if the rate of back-switching is very high, e.g., 10−1–10−2 per generation (Saunders et al. 2003). This is not the case for [PSI+], for which the reverse epimutation rate (loss of [PSI+]) is <2 × 10−4 (Tank et al. 2007).

Other [PSI+]-like phenotypes, including genetic mimics:

[PSI+] causes partial loss of Sup35 function, leading to elevated rates of translational readthrough at all stop codons (Figure 1b). There are many other spontaneous changes, presumably mutations, that also lead to elevated translational readthrough (Lund and Cox 1981). Mutations that affect readthrough at all stop codons (Figure 1c) (sometimes called “[PSI+]-like”) can be considered as genetic “mimics” because they produce the same phenotype as the Sup35 aggregate, but are generally not epigenetically inherited. A specific example of such a genetic mimic was characterized by Eaglestone et al. (1999), who identified the sal3-4 point mutation in the SUP35 gene. This leads to a defect in the Sup35 protein structure rendering the termination process less efficient (Eaglestone et al. 1999). The sal3-4 mutant can therefore be considered a partial loss-of-function genetic mimic of [PSI+], since it generates the same readthrough phenotype. Translation termination could also potentially be impaired through other point mutations or deletions, for example, in either the SUP35 or the SUP45 gene (Stansfield et al. 1995a) or in a tRNA that mutates to recognize stop codons at a higher rate. The presence of genetic mimics, whose effects are less reversible than those of [PSI+], can affect the evolution of the evolvability properties of the [PSI+] system such as its epimutation rate (Lancaster and Masel 2009). Note that genetic mimics are quite different from much rarer point mutations that convert stop codons into coding sequence (Figure 1d), resulting in readthrough at a single gene rather than multiple genes.Here we performed experiments to obtain accurate and precise estimates of the baseline appearance rates of both [PSI+] and [PSI+]-like phenotypes in permissive laboratory conditions, excluding stop codon point mutations that affect only a single gene. Our estimates are superior to previous estimates, since we use the fluctuation test. We consider the consequences of these estimates for the evolution of the [PSI+] system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号