首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic instability has long been hypothesized to be a cardinal feature of cancer. Recent work has strengthened the proposal that mutational alterations conferring instability occur early during tumour formation. The ensuing genetic instability drives tumour progression by generating mutations in oncogenes and tumour-suppressor genes. These mutant genes provide cancer cells with a selective growth advantage, thereby leading to the clonal outgrowth of a tumour. Here, we discuss the role of genetic instability in tumour formation and outline future work necessary to substantiate the genetic instability hypothesis.  相似文献   

2.
Genetic instability has long been hypothesized to be a cardinal feature of cancer. Recent work has strengthened the proposal that mutational alterations conferring instability occur early during tumour formation. The ensuing genetic instability drives tumour progression by generating mutations in oncogenes and tumour-suppressor genes. These mutant genes provide cancer cells with a selective growth advantage, thereby leading to the clonal outgrowth of a tumour. Here, we discuss the role of genetic instability in tumour formation and outline future work necessary to substantiate the genetic instability hypothesis.  相似文献   

3.
Towards a genetic-based classification of human lung cancer.   总被引:4,自引:0,他引:4  
Lung cancer is a highly aggressive neoplasm which is reflected by a multitude of genetic aberrations being detectable on the chromosomal and molecular level. In order to understand this seemingly genetic chaos, we performed Comparative Genomic Hybridisation (CGH) in a large collective of human lung carcinomas investigating different tumor entities as well as multiple individual tumour specimens of single patients. Despite the considerable genetic instability being reflected by the well known morphological heterogeneity of lung cancer the comparison of different tumour groups using custom made computer software revealed recurrent aberration patterns and highlighted chromosomal imbalances that were significantly associated with morphological histotypes and biological phenotypes. Specifically we identified imbalances in NSCLC being associated with metastasis formation which are typically present in SCLC thus explaining why the latter is such an aggressive neoplasm characterized by widespread tumor dissemination. Based on the genetic data a new model for the development of SCLC is presented. It suggests that SCLC evolving from the same stem cell as NSCLC should be differentiated into primary and secondary tumors. Primary SCLC corresponding to the classical type evolved directly from an epithelial precursor cell. In contrast, secondary SCLC correlating with the combined SCLC develops via an NSCLC intermediate. In addition, we established libraries of differentially expressed genes from different human lung cancer types to identify new candidate genes for several of the chromosomal subregions identified by CGH. In this review, we summarise the status of our results aiming at a refined classification of lung cancer based on the pattern of genetic aberrations.  相似文献   

4.
The nuclei of the cells of most solid tumours in histopathologic preparations vary in size, shape and chromatin pattern, both from normal nuclei and from each other. These features have not been explained in terms of conventional concepts of nuclear structure and theories of carcinogenesis. In recent years, the unfolded chromosomes have been shown to occupy "domains" in the nucleus during interphase, providing a relatively uniform density of fine chromatin fibres throughout the nucleus in the living state. This is in contrast to the appearances of interphase chromatin existing as coarse clumps and fibres (heterochromatin and euchromatin respectively) as are seen in histologic preparations. Additionally, the binding of chromatin to nuclear membrane, the possible existence of a nuclear matrix, the functions of nuclear pores, and the attachments of cytoskeletal structures to the outer nuclear membrane are now recognised. Studies of genetic instability of cancer cells (many random mutations are present in the genome, which vary from nucleus-to-nucleus in individual tumours) have shown that this phenomenon occurs early in tumour formation, can be present in morphologically-normal cells adjacent to tumours, and can result in thousands of genomic events per tumour cell. These observations form the basis for the mutator phenotype/clonal selection theory of carcinogenesis, which proposes that genetic instability is an essential early part of carcinogenesis. Genetic instability has been used to explain significant cell-to-cell variability of behaviour (tumour cell heterogeneity) among cells of individual tumours. This paper proposes that a high incidence of nucleus-to-nucleus-variable mutation of the genes for factors controlling nuclear morphology in tumours can explain nucleus-to-nucleus variations of histopathologic appearance of these nuclei when some additional effects of histological processing are taken into account.  相似文献   

5.
Cancer development is a stepwise process through which normal somatic cells acquire mutations which enable them to escape their normal function in the tissue and become self-sufficient in survival. The number of mutations depends on the patient's age, genetic susceptibility and on the exposure of the patient to carcinogens throughout their life. It is believed that in every malignancy 4-6 crucial similar mutations have to occur on cancer-related genes. These genes are classified as oncogenes and tumour suppressor genes (TSGs) which gain or lose their function respectively, after they have received one mutative hit or both of their alleles have been knocked out. With the acquisition of each of the necessary mutations the transformed cell gains a selective advantage over normal cells, and the mutation will spread throughout the tissue via clonal expansion. We present a simplified model of this mutation and expansion process, in which we assume that the loss of two TSGs is sufficient to give rise to a cancer. Our mathematical model of the stepwise development of breast cancer verifies the idea that the normal mutation rate in genes is only sufficient to give rise to a tumour within a clinically observable time if a high number of breast stem cells and TSGs exist or genetic instability is involved as a driving force of the mutation pathway. Furthermore, our model shows that if a mutation occurred in stem cells pre-puberty, and formed a field of cells with this mutation through clonal formation of the breast, it is most likely that a tumour will arise from within this area. We then apply different treatment strategies, namely surgery and adjuvant external beam radiotherapy and targeted intraoperative radiotherapy (TARGIT) and use the model to identify different sources of local recurrence and analyse their prevention.  相似文献   

6.
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism’s genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.Subject terms: Epigenetics, Gene regulation  相似文献   

7.
Tumorigenesis can be viewed as an imbalance between the mechanisms of cell-cycle control and mutation rates within the genes. Genomic instability is broadly classified into microsatellite instability (MIN) associated with mutator phenotype, and chromosome instability (CIN) recognized by gross chromosomal abnormalities. Three intracellular mechanisms are involved in DNA damage repair that leads to mutator phenotype. They include the nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). The CIN pathway is typically associated with the accumulation of mutations in tumor suppressor genes and oncogenes. Defects in DNA MMR and CIN pathways are responsible for a variety of hereditary cancer predisposition syndromes including hereditary non-polyposis colorectal carcinoma (HNPCC), Bloom syndrome, ataxia-telangiectasia, and Fanconi anaemia. While there are many genetic contributors to CIN and MIN, there are also epigenetic factors that have emerged to be equally damaging to cell-cycle control. Hypermethylation of tumor suppressor and DNA MMR gene promoter regions, is an epigenetic mechanism of gene silencing that contributes to tumorigenesis. Telomere shortening has been shown to increase genetic instability and tumor formation in mice, underscoring the importance of telomere length and telomerase activity in maintaining genomic integrity. Mouse models have provided important insights for discovering critical pathways in the progression to cancer, as well as to elucidate cross talk among different pathways. This review examines various molecular mechanisms of genomic instability and their relevance to cancer.  相似文献   

8.
Molecular oncogenetics of metastasis   总被引:3,自引:0,他引:3  
Metastasis is a complex non-stochastic process that is most likely the result of genetic and epigenetic interactions of a wide variety of genes. The search for a single gene which can encompass such a pleiotropic response as to account for the observed phenotypic characteristics of metastatic tumour populations has been unsuccessful. Particular studies involving gene transfection, subtractive hybridisation and cell fusion are beginning to identify specific genes which contribute to metastasis in some cell types. However, such analyses are complicated by the inherent genetic instability and phenotypic heterogeneity present in tumour populations. A more detailed understanding of the metastatic process may require an abandoning of current generalised approaches to metastasis in favour of concentrating on key components of the metastatic cascade such as adhesion and invasion.  相似文献   

9.
Genetic instability is a defining feature of human cancer. The main type of genetic instability, chromosomal instability (CIN), enhances the rate of gross chromosomal changes during cell division. CIN is brought about by mutations of CIN genes, i.e. genes that are involved in maintaining the genomic integrity of the cell. A major question in cancer genetics is whether genetic instability is a cause and hence a driving force of tumorigenesis. A mathematical framework for studying the somatic evolution of cancer sheds light onto the causal relations between CIN and human cancer.  相似文献   

10.
The epigenetic progenitor origin of human cancer   总被引:16,自引:0,他引:16  
Cancer is widely perceived as a heterogeneous group of disorders with markedly different biological properties, which are caused by a series of clonally selected genetic changes in key tumour-suppressor genes and oncogenes. However, recent data suggest that cancer has a fundamentally common basis that is grounded in a polyclonal epigenetic disruption of stem/progenitor cells, mediated by 'tumour-progenitor genes'. Furthermore, tumour cell heterogeneity is due in part to epigenetic variation in progenitor cells, and epigenetic plasticity together with genetic lesions drives tumour progression. This crucial early role for epigenetic alterations in cancer is in addition to epigenetic alterations that can substitute for genetic variation later in tumour progression. Therefore, non-neoplastic but epigenetically disrupted stem/progenitor cells might be a crucial target for cancer risk assessment and chemoprevention.  相似文献   

11.
Microsatellite instability (MSI) and loss of heterozygosity (LOH) represent molecular disorders acquired by the cell during neoplastic transformation. Both are associated with genetic instability. Functional silencing of tumour suppressor genes may be the consequence of genomic instability, particularly of the globally occurring LOH phenomenon. Numerous studies have confirmed the role of MSI/LOH at both the early and the late stages of thyroid tumourigenesis. This paper reviews the available study results on MSI/LOH significance and prevalence in thyroid neoplasms. Additionally, it summarises the knowledge regarding the practical usage of the study findings on MSI/LOH in aspects of cancer risk assessment as well as the development of prognostic markers for thyroid neoplasms.  相似文献   

12.
The metastatic cascade which leads to the death of cancer patients results from a multi‐step process of tumour progression caused by genetic and epigenetic alterations in key regulatory molecules. It is, therefore, crucial to improve our understanding of the regulation of genes controlling the metastatic process to identify predictive biomarkers and to develop more effective therapies to treat advanced disease. The study of epigenetic mechanisms of gene regulation offers a novel approach for innovative diagnosis and treatment of cancer patients. Recent discoveries provide compelling evidence that the methylation landscape (changes in both DNA methylation and histone post‐translational modifications) is profoundly altered in cancer cells and contributes to the altered expression of genes regulating tumour phenotypes. However, the impact of methylation events specifically on the advanced metastatic process is poorly understood compared with the initial oncogenic events. Moreover, the characterisation of a large number of histone‐modifying enzymes has revealed their active roles in cancer progression, via the regulation of specific target genes controlling different metastatic phenotypes. Here, we discuss two main methylating events (DNA methylation and histone‐tail methylation) involved in oncogenesis and metastasis formation. The potential reversibility of these molecular events makes them promising biomarkers of metastatic potential and potential therapeutic targets.  相似文献   

13.
Our vision of the cancer cell has dramatically changed since the discovery of proto-oncogenes, whose deregulation was proposed to mimic normal growth signalling. This notion, linking cancer to cell signalling pathways, has progressively led the way to the concept of the mutator phenotype, in which genetic instability plays an essential role in the onset of cancer. This then transformed cancer into a DNA repair disease. However, as foreseen decades ago by cytogeneticists, point mutations are not sufficient to give a full picture of the whole process. As a result, aneuploidy, rather than gene mutation, has been proposed as the explanation for the complex changes observed in cancer cells. The culprits were found among genes involved in the control of the cell division cycle, and work aimed at understanding the regulation of S phase and mitosis have yielded new insights into our understanding of cancer.  相似文献   

14.
Cadherin cell adhesion molecules play an essential role in creating tight intercellular association and their loss has been correlated with poor prognosis in human cancer. Mutational activation of protein kinases and loss of cell adhesion occur together in human lung adenocarcinoma but how these two pathways interconnect is only poorly understood. Mouse models of human lung adenocarcinoma with oncogene expression targeted to subtypes of lung epithelial cells led to formation of adenomas or adenocarcinomas that lacked metastatic potential. Conditional genetic abrogation of epithelial tumour cell adhesion in mice with benign lung tumours induced by oncogenic RAF kinase has been demonstrated to induce intratumourous vascularization (angiogenic switch), progression to invasive adenocarcinoma and micrometastasis. Importantly, breaking cell adhesion in benign oncogene-driven lung tumour cells activated β-catenin signalling and induced the expression of several genes that are normally expressed in intestine rather than the lung. I will discuss potential routes to nuclear β-catenin signalling in cancer and how nuclear β-catenin may epigenetically alter the plasticity of tumour cells during malignant progression.  相似文献   

15.
Fragile and unstable chromosomes in cancer: causes and consequences   总被引:4,自引:0,他引:4  
Cancer cells commonly exhibit various forms of genetic instability, such as changes in chromosome copy number, translocations and point mutations in particular genes. Although transmissible change seems to be an essential part of the neoplastic process, the extent to which DNA instability is a cause rather than a consequence of cancer is unclear. Chromosomal fragile sites have been proposed to be not only susceptible to DNA instability in cancer cells, but also associated with genes that contribute to the neoplastic process. Mutation at fragile site loci might therefore have a causative role in cancer. Recent studies on one class of human chromosomal fragile sites show that instability at fragile site loci can functionally contribute to tumor cell biology.  相似文献   

16.
Pfau SJ  Amon A 《EMBO reports》2012,13(6):515-527
Aneuploidy is frequently associated with disease and developmental abnormalities. It is also a key characteristic of cancer. Several model systems have been developed to study the role of chromosomal instability and aneuploidy in tumorigenesis. The results are surprisingly complex, with the conditions sometimes promoting and sometimes inhibiting tumour formation. Here, we review the effects of aneuploidy and chromosomal instability in cells and model systems of cancer, propose a model that could explain these complex findings and discuss how the aneuploid condition could be exploited in cancer therapy.  相似文献   

17.
Many cancers are aneuploid. However, the precise role that chromosomal instability plays in the development of cancer and in the response of tumours to treatment is still hotly debated. Here, to explore this question from a theoretical standpoint we have developed an agent-based model of tissue homeostasis in which to test the likely effects of whole chromosome mis-segregation during cancer development. In stochastic simulations, chromosome mis-segregation events at cell division lead to the generation of a diverse population of aneuploid clones that over time exhibit hyperplastic growth. Significantly, the course of cancer evolution depends on genetic linkage, as the structure of chromosomes lost or gained through mis-segregation events and the level of genetic instability function in tandem to determine the trajectory of cancer evolution. As a result, simulated cancers differ in their level of genetic stability and in their growth rates. We used this system to investigate the consequences of these differences in tumour heterogeneity for anti-cancer therapies based on surgery and anti-mitotic drugs that selectively target proliferating cells. As expected, simulated treatments induce a transient delay in tumour growth, and reveal a significant difference in the efficacy of different therapy regimes in treating genetically stable and unstable tumours. These data support clinical observations in which a poor prognosis is correlated with a high level of chromosome mis-segregation. However, stochastic simulations run in parallel also exhibit a wide range of behaviours, and the response of individual simulations (equivalent to single tumours) to anti-cancer therapy prove extremely variable. The model therefore highlights the difficulties of predicting the outcome of a given anti-cancer treatment, even in cases in which it is possible to determine the genotype of the entire set of cells within the developing tumour.  相似文献   

18.
Cancer research has previously focused on the identification of specific genes and pathways responsible for cancer initiation and progression based on the prevailing viewpoint that cancer is caused by a stepwise accumulation of genetic aberrations. This viewpoint, however, is not consistent with the clinical finding that tumors display high levels of genetic heterogeneity and distinctive karyotypes. We show that chromosomal instability primarily generates stochastic karyotypic changes leading to the random progression of cancer. This was accomplished by tracing karyotypic patterns of individual cells that contained either defective genes responsible for genome integrity or were challenged by onco-proteins or carcinogens that destabilized the genome. Analysis included the tracing of patterns of karyotypic evolution during different stages of cellular immortalization. This study revealed that non-clonal chromosomal aberrations (NCCAs) (both aneuploidy and structural aberrations) and not recurrent clonal chromosomal aberrations (CCAs) are directly linked to genomic instability and karyotypic evolution. Discovery of "transitional CCAs" during in vitro immortalization clearly demonstrates that karyotypic evolution in solid tumors is not a continuous process. NCCAs and their dynamic interplay with CCAs create infinite genomic combinations leading to clonal diversity necessary for cancer cell evolution. The karyotypic chaos observed within the cell crisis stage prior to establishment of the immortalization further supports the ultimate importance of genetic aberrations at the karyotypic or genome level. Therefore, genomic instability generated NCCAs are a key driving force in cancer progression. The dynamic relationship between NCCAs and CCAs provides a mechanism underlying chromosomal based cancer evolution and could have broad clinical applications.  相似文献   

19.
Recent studies have demonstrated that cells exposed to ionizing radiation or alkylating agents can develop prolonged genetic instability. Induced genetic instability is manisested in multiple ways, including delayed reproductive death, an increased rate of point mutations, and an increased rate of chromosome rearrangements. In many respects these changes are similar to the genetic instability associated with cancer and some human genetic diseases. Therefore, as with cancer cells, multiple mechanisms may be involved, some occuring in the early stages and some in the later stages. The high percentage of cells that develop induced genetic instability after exposure to stress, and the prolonged period over which the instability occurs, indicates that the instability is not in response to residual damage in the DNA or mutations in specific genes. Instead, changes affecting most of the exposed cells, such as epigenetic alterations in gene expression or chain reactions of chromosome rearrangements, are a more likely explanation. Learning more about the mechanisms involved in this process is essential for understanding the consequences of exposure of cells to ionizing radiation or alkylating agents.  相似文献   

20.
One important challenge for cancer is efficient biomarkers monitoring its formation and developments remain greatly limited. Although the accumulated big omics data provide great opportunities to the above purpose, the biomarkers identified by the data‐driven strategy often do not work well in new datasets, which is one of the main bottlenecks limiting their utilities. Given that atavistic phenotype is generally observed in cancer cells, we have been suggested that the activity of progenitor genes in tumour could serve as an efficient cancer biomarker. For doing so, we first curated 77 progenitor genes and then proposed a quantitative score to evaluate cancer progenitorness. After applying progenitorness score to ~ 22 000 samples, 33 types of cancers from 81 datasets, this method generally performs well in the diagnosis, prognosis and therapy monitoring of cancers. This study proposed a potential pan‐cancer biomarker and revealed a significant role of atavism in the formation and development of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号