首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Wilms' tumour suppressor protein, WT1, is a zinc finger protein essential for the development of several organs, including the kidney and gonads. In each of these tissues WT1 is required at multiple stages of development and its persistent expression in podocytes and Sertoli cells suggests WT1 may also have a role in the maintenance of kidney and testis function throughout adult life. Naturally occurring isoforms of WT1 are generated by alternative mRNA splicing. An altered ratio of the splice isoforms WT1-KTS and WT1 + KTS appears to be sufficient to account for the developmental abnormalities (pseudohermaphroditism and nephropathy) characteristic of Frasier syndrome. We show that mice with a transgene encoding WT1-KTS do not differ from their wild-type littermates unless they are also heterozygous for a null mutation at the endogenous Wt1 locus. Animals with both genetic modifications develop proteinuria, together with multiple glomerular cysts, and male infertility. These pathologic changes may be explained as a consequence of altering the WT1 isoform ratio in tissues that express WT1 during adulthood. The results suggest WT1 misexpression could contribute to human glomerulocystic kidney disease.  相似文献   

5.
6.
7.
New clues to the puzzle of mammalian sex determination   总被引:1,自引:0,他引:1       下载免费PDF全文
Bowles J  Koopman P 《Genome biology》2001,2(9):reviews1025.1-reviews10254
  相似文献   

8.
9.
WT1 proteins: functions in growth and differentiation   总被引:29,自引:0,他引:29  
  相似文献   

10.
Wilms tumor and the WT1 gene   总被引:24,自引:0,他引:24  
  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2.The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号