首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peritoneal and bronchoalveolar macrophages activated in vitro by endotoxin, exhibit alterations in the acid phosphatase activity of cell lysates when certain hormones or autacoids are present in the culture medium. They also show morphological changes concerning general appearance and acid phosphatase cytochemistry. Certain agents known to increase the intracellular levels of cyclic AMP, such as dopamine and prostaglandin E2, decreased this enzyme activity in the lysates of peritoneal macrophages. Adrenalin had no effect on this activity at 14 hours, but was found to increase the activity in the culture medium at the initial hours of incubation. Glucagon decreased whereas insulin increased acid phosphatase activity in bronchoalveolar macrophages. Serotonin or histamine, known to activate phospholipase C, increased this activity in peritoneal or bronchoalveolar macrophages. The results of this study, taken together with previously published data (Kondomerkos et al., 2003), suggest that hormones and autacoids may control certain parameters of macrophage activation including acid phosphatase activity.  相似文献   

2.
Peritoneal macrophages activated in vitro by endotoxin exhibit alterations of their capability to produce hydrogen peroxide after phorbol ester stimulation when certain hormones or autacoids are present in the culture medium. They also show morphological changes, mainly concerning cell size and nuclear appearance. Agents known to increase the intracellular levels of cyclic AMP, e.g. adrenalin and PGE2 reduce the hydrogen peroxide production. Insulin, which is known to decrease cyclic AMP levels, produces opposite results. Agents postulated to act via phospholipase C, e.g. serotonin, augment the production of hydrogen peroxide. We assume that this form of modulation may represent a regulatory mechanism of macrophage activation.  相似文献   

3.
The broad objective of these studies was to understand the nature of cyclic GMP system and the mechanism(s) whereby hormone, autacoids and drugs alter this signal in various physiological systems. Studies were undertaken on the modulation of guanylate cyclase activity by oxygen-radicals/nitric oxide and the mechanism(s) of generation of nitric oxide by receptor-selective hormones. We observed that cytosolic guanylate cyclase undergoes significant stimulation in the presence of oxygen-radicals/nitric oxide. This activation by nitric oxide can be reversed by hemeproteins, thus, enabling guanylate cyclase system to cycle between activated and deactivated state. The evidence is presented that oxygen-radicals are required for the synthesis of nitric oxide by NO synthase as demonstrated by inhibition of NO formation by oxygen-radical scavengers. And finally, the data is presented that acetylcholine-induced elevations of intracellular levels of cyclic GMP can be attenuated by muscarinic antagonist, atropine and superoxide anion scavenger, nitroblue tetrazolium. These observations establish a novel concept that activation of hormone receptors on the cell surface, triggers generation of oxygen radicals and hydrogen peroxide which participates in the catalytic conversion of L-arginine to nitric oxide by nitric oxide synthase in the presence of calcium ion. The oxygen-radicals/NO, thus formed, oxidatively activate guanylate cyclase and transduce the message of calcium-dependent hormones.  相似文献   

4.
The activity of nitric oxide synthase (NOS) during the respiratory burst in phorbol-1,2-myristate-1,3-acetate (PMA) stimulated macrophages has been the topic of much debate in the literature. To help clarify the role of NOS, we have examined the chemiluminescence arising from peroxynitrite production, nitrite/nitrate and nitric oxide production, and oxygen consumption during the respiratory burst in PMA-stimulated macrophages. The Griess reaction was used to measure nitrite/nitrate, spin trapping with N-methyl D-glucamine dithiocarbamate (MGD)2-Fe2+ was used to quantify nitric oxide, and the spin probe 2,2,6,6-tetramethylpiperidine-N-oxyl-4-ol (TEMPOL) was used to measure oxygen consumption. Oxygen free radical production (hydroxyl and superoxide free radicals) was also investigated using the spin trap 5,5-dimethyl-1-pyroline-1-oxide (DMPO). The chemiluminescence emitted by the PMA-stimulated macrophages and nitrite/nitrate in the culture system were both found to increase. However, the rate of nitric oxide release remained constant, indicating that the activity of NOS is not enhanced during the respiratory burst in PMA stimulated macrophages.  相似文献   

5.
Mitogen-stimulated goldfish kidney leucocytes secrete a number of different macrophage activation factors (MAF) that induce profound physiological changes in macrophages. MAF produced by goldfish kidney leucocytes was characterised using fast performance liquid chromatography (FPLC) and bioassays that measured MAF-induced respiratory burst (RB) and nitric oxide (NO) responses of activated macrophages. Mitogen-induced fish kidney leucocyte supernatants were fractionated using gel permeation FPLC (GP-FPLC) and the ability of different fractions to induce NO or RB measured. A MAF of M(r) 50 kD, that induced a potent nitric oxide response in both a long-term goldfish macrophage cell line (GMCL) and in in vitro-derived fish kidney macrophages (IVDKM) was identified. The GP-FPLC partially purified 50 kD MAF activity occasionally induced significantly higher nitric oxide production than that of the crude MAF preparations. This increase in the NO-inducing activity was due to segregation of the 50 kD MAF from a novel macrophage deactivating molecule of M(r) 10-12 kD present in crude MAF preparations. This 10-12 kD molecule was shown to inhibit nitric oxide production in cytokine-activated goldfish macrophages. Mitogen-induced fish kidney leucocyte supernatants contained two distinct MAFs that induced the respiratory burst in GMCL and IVDKM: the 50 kD and 30 kD proteins. The partially purified 30 kD MAF primed goldfish macrophage for increased RB activity after only 6 h of treatment, and continued to augment the RB activity after 24 h of stimulation. In contrast, the GP-FPLC partially purified 50 kD molecule also primed the RB after only 6 h of stimulation, but subsequently deprimed the RB after 24 h of stimulation, an effect similar to that observed for crude MAF preparations. The 50 kD MAF activity was further purified using chromatofocusing FPLC (C-FPLC) using basic pH gradients and was shown to consist of two distinct NO-inducing molecules (> pI 9.3). Mitogen-stimulated fish kidney leucocytes secrete several factors that profoundly affect the anti-microbial responses of teleost macrophages and which undoubtedly are responsible for regulating teleost macrophage function in vivo.  相似文献   

6.
The activity of peritoneal macrophages, nitrotyrosine concentration and condition of free radical processes in normal pregnancy in white rats against the background of the introduction of donator (sodium nitrite) and inhibitor (Nw-nitro-L-arginine methyl ester) of nitric oxide was studied. During normal pregnancy in animals, nitrotyrosine concentration, the activity of free radical processes, and phagocytosis increase. With the introduction of nitric oxide donator, NO level increases and after the injection of antagonist of nitric oxide it is reduced. These changes are accompanied by increased lipid peroxidation and activation of phagocytic activity of macrophages.  相似文献   

7.
Based on observations that lactic acid bacteria have the ability to activate macrophages, we assessed the potential effects of eight different Lactobacillus strains treated with gastrointestinal enzymes on the production of nitric oxide and various cytokines in macrophages. RAW 264.7 murine macrophage cells were cultured with either precipitates or supernatants of Lactobacillus strains digested with pepsin followed by pancreatin. The increased production of nitric oxide and interleukin (IL)-1beta, IL-6, IL-12 and tumour necrosis factor (TNF)-alpha were observed when cultured with precipitates, and this effect was largely strain-dependent. In contrast, the exposure of RAW 264.7 cells to supernatants produced weaker or nearly undetectable effects in comparison to the effects of exposure to precipitates. The induction of nitric oxide appeared to be unaffected. These results demonstrate that nitric oxide and cytokines were effectively induced when the bacterial precipitate was treated with macrophages. The results of the present study also indicate that Lactobacillus strains treated with digestive enzymes are capable of stimulating the production of nitric oxide and cytokines in macrophages, which may modulate the gastrointestinal immune function of the host when it is given as a feed additive.  相似文献   

8.
This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.  相似文献   

9.
The modulation of phagocytic cells by beta-estradiol, 11-ketotestosterone and progesterone was analyzed in common carp Cyprinus carpio. Carp kidney leukocytes were cultured in RPMI 1640 medium containing 0.1, 1, 10, 100 or 1000 nM concentration of each hormone. The production of superoxide anion, nitric oxide (NO) and phagocytosis were measured in vitro. Similar concentrations of cortisol were used as control. Phagocytic activities of carp macrophages was suppressed by treatment with beta-estradiol, progesterone and 11-ketotestosterone. The production of NO in carp macrophages was suppressed by progesterone and 11-ketotestosterone. However, carp macrophages incubated with beta-estradiol, progesterone and 11-ketotestosterone did not show any difference in the production of superoxide anion in comparison with control macrophages in the absence of hormones. Carp macrophages treated with cortisol suppressed phagocytosis and the production of nitric oxide and superoxide anion.  相似文献   

10.
The formation of reactive oxygen and nitrogen species by rat peritoneal macrophages induced by a low-intensity He-Ne laser radiation (LR) was studied in this work. It was found that the formation of reactive oxygen species, nitric oxide, and peroxynitrite as well as changes in the activity of superoxide dismutase (SOD) depended to a large extent on the LR dose. In particular, it was found that activation of SOD at low LR doses was accompanied by nitric oxide level increase, while the level of peroxynitrite showed no significant changes. On the other hand, an enhanced LR dose inhibited the enzyme, and this was accompanied by peroxynitrite accumulation. All the measurements were carried out the day after LR treatment. The revealed regularities consequently demonstrate the existence of a deferred LR action on macrophages associated with the production of reactive oxygen and nitrogen species.  相似文献   

11.
The methanolic extract from the rhizome of Hedychium coronarium was found to inhibit the increase in vascular permeability induced by acetic acid in mice and nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages. From the methanolic extract, three new labdane-type diterpenes, hedychilactones A, B, and C, were isolated together with six known diterpenes. The structures of hedychilactones were elucidated on the basis of chemical and physicochemical evidence. The diterpene constituents showed inhibitory effects on the increase in vascular permeability, nitric oxide production, and inducible nitric oxide synthase induction.  相似文献   

12.
Inhibition of nitric oxide production by arginine analogues was examined in three cell systems; macrophages, CNS tissue and endothelial cells. Nitric oxide production was assessed indirectly using in vitro assays measuring nitrite production (macrophages), cGMP elevation (CNS) and acetylcholine-induced relaxation of aortic ring segments (endothelium). NG-monomethyl-L-arginine and NG-amino-L-arginine possessed similar inhibitory activity in all three assays, while NG-nitro-L-arginine displayed a striking selectivity for inhibition of brain and endothelial cell nitric oxide synthesis, with IC50 values of 0.05 microM in the CNS versus 200 microM in macrophages. These results suggest that distinct enzymes are responsible for nitric oxide synthesis in different cell types, and indicate that it may be possible to selectively modulate nitric oxide production in vivo.  相似文献   

13.
Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.  相似文献   

14.
Phagocytes of the innate immune system, such as monocytes/macrophages, represent a first line of defense against invading microorganisms. Psychological stress is often thought to suppress the functioning of these cells, in part due to the immunosuppressive activity of stress-induced glucocorticoid hormones. However, exposure to the stressor social disruption (SDR) has been shown to increase cytokine production by monocytes/macrophages and to reduce their sensitivity to corticosterone. Thus, it was hypothesized that splenic monocytes/macrophages from socially stressed mice would be primed to be more physiologically active than cells from nonstressed controls. Flow cytometry was used to demonstrate that exposure to SDR significantly increased the expression of Toll-like receptors (TLR) 2 and 4 on the surface of splenic macrophages. In a follow-up experiment, exposure to SDR also increased the ability of these macrophages to kill Escherichia coli ex vivo and in vivo. However, SDR failed to increase the bactericidal activity of splenic macrophages from C3H/HeJ mice, which lack functional TLR4. In mice with functional TLR4, the stress-induced increase in bactericidal activity was associated with a significant increase in macrophage gene expression for inducible nitric oxide synthase and subunits of the NADPH oxidase complex, which are responsible for generating reactive nitrogen and oxygen intermediates, respectively. This stress-induced increase in gene expression was not evident in the TLR4-deficient mice. These data indicate that SDR increases TLR expression, which in turn enhances the bactericidal activity of splenic macrophages, in part by increasing pathways responsible for reactive oxygen and nitrogen intermediate production.  相似文献   

15.
In this study, we provide evidence that the double-stranded RNA-dependent protein kinase (PKR) is not required for virus-induced expression of inducible nitric oxide synthase (iNOS) or the activation of specific signaling pathways in macrophages. The infection of RAW264.7 cells with encephalomyocarditis virus (EMCV) induces iNOS expression and nitric oxide production, which are unaffected by a dominant-negative mutant of PKR. EMCV infection also activates the mitogen-activated protein kinase, cyclic AMP response element binding protein, and nuclear factor kappaB (NF-kappaB) signaling cascades at 15 to 30 min postinfection in PKR+/+ and PKR-/- macrophages. Activation of these signaling cascades does not temporally correlate with PKR activity or the accumulation of EMCV RNA, suggesting that an interaction between a structural component of the virion and the cell surface may activate macrophages. Consistent with this hypothesis, empty EMCV capsids induced comparable levels of iNOS expression, nitrite production, and activation of these signaling cascades to those induced by intact virions. These findings support the hypothesis that virion-host cell interactions are primary mediators of the PKR-independent activation of signaling pathways that participate in the macrophage antiviral response of inflammatory gene expression.  相似文献   

16.
17.
Summary The present study was designed to determine whether antitumor activity of macrophages induced with OK-432 and cyclophosphamide was mainly dependent on their ability to produce a soluble factor, that is,l-arginine-dependent nitric oxide as measured by nitrite concentration. Nitrite production by peritoneal macrophages from NIH Swiss mice pretreated with OK-432 (125 KE/kg) i.p. twice at 1-week intervals and with cyclophosphamide (200 mg/kg) i.p. 2 days before the second OK-432 treatment, increased with time for 24 h, and proportionally depended on macrophage numbers. Nitrite production was inhibited by actinomycin D and puromycin but not by mitomycin C.N G-Monomethyl-l-arginine, a specific competitive inhibitor ofl-arginine-dependent nitric oxide synthesis, also inhibited production. There was a close correlation between nitrite production and antitumor activity in macrophages from mice pretreated with either OK-432 and cyclophosphamide, OK-432, or thioglycolate broth. OK-432 increased both nitrite production and antitumor activities when added to the macrophage from mice pretreated with OK-432 but not with thioglycolate broth. Both activities of macrophages from mice pretreated with OK-432 and cyclophosphamide were enhanced with increasing concentrations ofl-arginine (0.125–1 mM) in the culture medium.d-Arginine, however, did not substitute forl-arginine. Neither activity was affected by contact between the macrophage and the EL4 cell. The macrophage showed antitumor activity through a membrane filter though the activity was greatly reduced. This antitumor activity of macrophages through a membrane was also inhibited byN G-Monomethyl-l-arginine, and increased by OK-432. However, conditioned media, obtained by culturing macrophages induced with OK-432 and cyclophosphamide, inhibited growth of EL4 cells. This activity was carried out by dialysable and non-dialysable factors. One of the dialysable factors was nitrite, an oxidized product of nitric oxide. The antitumor activity of non-dialysable factors was heat-stable and production of factors was increased byN G-Monomethyl-l-arginine and OK-432. Also, non-dialysable factors increased both antitumor and nitrite production activities of OK-432-elicited macrophages, when incubated with factors. Such activity of factors was also heat-stable. The production of factors increased with incubation time of macrophages, and was not inhibited byN G-Monomethyl-l-arginine. These results indicate that in vitro antitumor activity of macrophages induced with OK-432 and cyclophosphamide was mainly dependent onl-arginine-dependent nitric oxide, and that macrophageassociated soluble factors other than nitric oxide were also needed to inhibit fully tumor growth in vitro.  相似文献   

18.
RU 41740 (Biostim) is an immunomodulator clinically used for the treatment of chronic bronchitis and recurrent pulmonary infections. In these diseases large amounts of mucus are produced which congest the bronchi. A major glycosaminoglycan constituent of this mucus is hyaluronic acid, one of the largest molecules in nature; its metabolic degradation is carried out by 3 acid hydrolases: hyaluronidase, beta-N-acetylglucosaminidase, and beta-glucuronidase. In the lung these enzymes are especially synthesized and active in alveolar macrophages. It was thus interesting to study the effect of RU 41740 administration on the hyaluronic acid-degrading activity of these cells. This compound was given by gastric gavage to rats and the activities of lung alveolar macrophage and alveolar fluid hyaluronidase, beta-N-acetylglucosaminidase, beta-glucuronidase, and acid phosphatase as a lysosomal marker were determined. The effect on macrophage proliferation was also examined. The results obtained showed that: (1) unstimulated alveolar macrophages display the remarkable property, compared with other cell types, that hyaluronidase activity is about equally distributed between the inside and the outside of the cell; (2) RU 41740 administration increases the total activity of the 4 enzymes studied in the alveolar macrophages without inducing any increase in the number of macrophages; (3) the intracellular activities of beta-N-acetylglucosaminidase and beta-glucuronidase are markedly increased, whereas intracellular hyaluronidase activity is not changed. However, in the extracellular fluid only hyaluronidase activity is highly increased; (4) even the lysosomal marker enzyme acid phosphatase has only its intracellular activity increased. This would suggest the possibility that other lysosomal enzymes may also be increased by this immunomodulator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
As well as superoxide generated from neutrophils, nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in macrophages plays an important role in inflammation. We previously showed that 6-formylpterin, a xanthine oxidase inhibitor, has a superoxide scavenging activity. In the present study, to elucidate other pharmacological activities of 6-formylpterin, we investigated the effects of 6-formylpterin on production of nitric oxide (NO) in the murine macrophage cell line RAW 264.7 stimulated by lipopolysaccharide (LPS) and interferon-gamma (INF-gamma). 6-Formylpterin suppressed the expression of iNOS, and it also inhibited the catalytic activity of iNOS, which collectively resulted in the inhibition of NO production in the stimulated macrophages. However, 6-formylpterin did not scavenge the released NO from an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). These results indicate that 6-formylpterin inhibits pathological NO generation from macrophages during inflammation, but that it does not disturb the physiological action of NO released from other sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号