首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sorting of proteins to vacuoles in plant cells   总被引:11,自引:0,他引:11  
An individual plant cell may contain at least two functionally and structurally distinct types of vacuoles: protein storage vacuoles and lytic vacuoles. Presumably a cell that stores proteins in vacuoles must maintain these separate compartments to prevent exposure of the storage proteins to an acidified environment with active hydrolytic enzymes where they would be degraded. Thus, the organization of the secretory pathway in plant cells, which includes the vacuoles, has a fascinating complexity not anticipated from the extensive genetic and biochemical studies of the secretory pathway in yeast. Plant cells must generate the membranes to form two separate types of tonoplast, maintain them as separate organelles, and direct soluble proteins from the secretory flow specifically to one or the other via separate vesicular pathways. Individual soluble and membrane proteins must be recognized and sorted into one or the other pathway by distinct, specific mechanisms. Here we review the emerging picture of how separate plant vacuoles are organized structurally and how proteins are recognized and sorted to each type.  相似文献   

2.
Protein storage vacuoles are found in a variety of tissues butare especially abundant in the storage organs of fruits andseeds. In this review, we focus on the protein storage vacuolesof cereal aleurone. In the mature grain, these organelles arerepositories for reserve nitrogen, carbon and minerals. Followingimbibition, protein storage vacuoles of cereal aleurone changefrom storage compartments to lytic organelles. Changes in proteinstorage vacuole structure and enzymatic activity during thistransition are discussed. It is emphasized that protein storagevacuoles are poised for reserve mobilization, and that gibberellinperception by the aleurone cell initiates a signalling cascadethat promotes acidification of the vacuole lumen and activationof enzymes and transporters.Copyright 1998 Annals of BotanyCompany Protein storage vacuole, cereal aleurone, gibberellin, abscisic acid, protein body, endosperm reserves.  相似文献   

3.
The inner bark tissues of three temperate hardwoods contain specific proteins which undergo seasonal fluctuations. Increases in particular proteins, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, occur within the bark of several Acer, Populus and Salix spp. during late summer and early autumn. These proteins are abundant in the bark throughout the winter and their levels decline the following spring. Light and electron microscopy showed that the parenchyma cells of the inner bark are packed with spherical organelles throughout the overwintering period. These organelles are rich in protein and analogous to protein bodies found in cells of mature seeds. The protein bodies of the parenchyma cells are replaced by large central vacuoles during spring and summer, presumably as a result of the mobilization of the storage protein and fusion of the protein bodies. The high levels of specific proteins in inner bark tissues and the presence of protein bodies within the parenchyma cells indicate that the living cells of the bark act as a nitrogen reserve in overwintering temperate hardwoods.Abbreviations FW fresh weight - kDa kilodalton - M r relative molecular mass  相似文献   

4.
Plant vacuoles are essential multifunctional organelles largely distinct from similar organelles in other eukaryotes. Embryo protein storage vacuoles and the lytic vacuoles that perform a general degradation function are the best characterized, but little is known about the biogenesis and transition between these vacuolar types. Here, we designed a fluorescent marker–based forward genetic screen in Arabidopsis thaliana and identified a protein affected trafficking2 (pat2) mutant, whose lytic vacuoles display altered morphology and accumulation of proteins. Unlike other mutants affecting the vacuole, pat2 is specifically defective in the biogenesis, identity, and function of lytic vacuoles but shows normal sorting of proteins to storage vacuoles. PAT2 encodes a putative β-subunit of adaptor protein complex 3 (AP-3) that can partially complement the corresponding yeast mutant. Manipulations of the putative AP-3 β adaptin functions suggest a plant-specific role for the evolutionarily conserved AP-3 β in mediating lytic vacuole performance and transition of storage into the lytic vacuoles independently of the main prevacuolar compartment-based trafficking route.  相似文献   

5.
One of the main seed storage proteins of Norway spruce ( Picea abies ), is a salt-soluble protein with an average molecular mass of 42 kDa. This protein was localized by immunocytochemical methods in ultrathin sections of megagametophytes active in storage protein synthesis, as analyzed by SDS-PAGE. The megagametophyte in spruce starts accumulating storage materials, proteins and lipids, as the young embryo grows into the gametophytic tissue. It then continues to accumulate these storage products throughout seed development (Hakman 1993). Megagametophytes at an early stage of storage protein accumulation were chosen in this study for analysing the likely transport pathway of the proteins, since only a small amount of lipid had yet accumulated in the cells, and cell organelles were still easy to distinguish. An antibody against the 42 kDa storage protein showed very good reactivity with the 42 kDa protein in immunoblot experiments with total protein extracts from megagametophytes and embryos. In ultrathin sections of the megagametophyte, the antibodies were preferentially localized in the lumen of Golgi cisterna, in Golgi-associated vesicles, protein deposits close to the vacuolar membrane and in protein storage vacuoles (protein bodies). These observations indicate that the transport is mediated by the Golgi apparatus.
Also, proteins present in storage vacuoles in mature zygotic and somatic embryos showed intense labelling with these antibodies in ultrathin sections.  相似文献   

6.
Tonoplast intrinsic protein isoforms as markers for vacuolar functions   总被引:21,自引:0,他引:21       下载免费PDF全文
GY Jauh  TE Phillips    JC Rogers 《The Plant cell》1999,11(10):1867-1882
Plant cell vacuoles may have storage or lytic functions, but biochemical markers specific for the tonoplasts of functionally distinct vacuoles are poorly defined. Here, we use antipeptide antibodies specific for the tonoplast intrinsic proteins alpha-TIP, gamma-TIP, and delta-TIP in confocal immunofluorescence experiments to test the hypothesis that different TIP isoforms may define different vacuole functions. Organelles labeled with these antibodies were also labeled with antipyrophosphatase antibodies, demonstrating that regardless of their size, they had the expected characteristics of vacuoles. Our results demonstrate that the storage vacuole tonoplast contains delta-TIP, protein storage vacuoles containing seed-type storage proteins are marked by alpha- and delta- or alpha- and delta- plus gamma-TIP, whereas vacuoles storing vegetative storage proteins and pigments are marked by delta-TIP alone or delta- plus gamma-TIP. In contrast, those marked by gamma-TIP alone have characteristics of lytic vacuoles, and results from other researchers indicate that alpha-TIP alone is a marker for autophagic vacuoles. In root tips, relatively undifferentiated cells that contain vacuoles labeled separately for each of the three TIPs have been identified. These results argue that plant cells have the ability to generate and maintain three separate vacuole organelles, with each being marked by a different TIP, and that the functional diversity of the vacuolar system may be generated from different combinations of the three basic types.  相似文献   

7.
Plant cells may contain two functionally distinct vacuolar compartments. Membranes of protein storage vacuoles (PSV) are marked by the presence of α-tonoplast intrinsic protein (TIP), whereas lytic vacuoles (LV) are marked by the presence of γ-TIP. Mechanisms for sorting integral membrane proteins to the different vacuoles have not been elucidated. Here we study a chimeric integral membrane reporter protein expressed in tobacco suspension culture protoplasts whose traffic was assessed biochemically by following acquisition of complex Asn-linked glycan modifications and proteolytic processing, and whose intracellular localization was determined with confocal immunofluorescence. We show that the transmembrane domain of the plant vacuolar sorting receptor BP-80 directs the reporter protein via the Golgi to the LV prevacuolar compartment, and attaching the cytoplasmic tail (CT) of γ-TIP did not alter this traffic. In contrast, the α-TIP CT prevented traffic of the reporter protein through the Golgi and caused it to be localized in organelles separate from ER and from Golgi and LV prevacuolar compartment markers. These organelles had a buoyant density consistent with vacuoles, and α-TIP protein colocalized in them with the α-TIP CT reporter protein when the two were expressed together in protoplasts. These results are consistent with two separate pathways to vacuoles for membrane proteins: a direct ER to PSV pathway, and a separate pathway via the Golgi to the LV.  相似文献   

8.
SJ Swanson  PC Bethke    RL Jones 《The Plant cell》1998,10(5):685-698
Light microscopy was used to study the structure and function of vacuoles in living protoplasts of barley (Hordeum vulgare cv Himalaya) aleurone. Light microscopy showed that aleurone protoplasts contain two distinct types of vacuole: the protein storage vacuole and a lysosome-like organelle, which we have called the secondary vacuole. Fluorescence microscopy using pH-sensitive fluorescent probes and a fluorogenic substrate for cysteine proteases showed that both protein storage vacuoles and secondary vacuoles are acidic, lytic organelles. Ratio imaging showed that the pH of secondary vacuoles was lower in aleurone protoplasts incubated in gibberellic acid than in those incubated in abscisic acid. Uptake of fluorescent probes into intact, isolated protein storage vacuoles and secondary vacuoles required ATP and occurred via at least two types of vanadate-sensitive, ATP-dependent tonoplast transporters. One transporter catalyzed the accumulation of glutathione-conjugated probes, and another transported probes not conjugated to glutathione.  相似文献   

9.
大豆子叶细胞中由液泡发育成蛋白体的不同方式   总被引:4,自引:1,他引:4  
  相似文献   

10.
R. Bergfeld  T. Kühnl  P. Schopfer 《Planta》1980,148(2):146-156
An electron microscopic investigation of fine structural changes in post-meristematic cotyledon mesophyll cells during the period of storage protein accumulation (16–32 d after pollination) showed that the rough ER, the Golgi apparatus and the developing vacuome are intimately involved in the formation of storage protein bodies (aleurone bodies). At the onset of storage protein accumulation (16–18 d after pollination) storage protein-like material appears within Golgi vesicles and preformed vacuoles. At a later stage (24 d after pollination) similar material can also be detected within vesicles formed directly by the rough endoplasmic reticulum (ER). It is concluded that there are two routes for storage protein transport from its site of synthesis at the ER to its site of accumulation in the vacuome. The first route involves the participation of dictyosomes while the second route bypasses the Golgi apparatus. It appears that the normal pathways of membrane flow in the development of central vacuoles in post-meristematic cells are used to deposit the storage protein within the protein bodies. Thus, the protein body can be regarded as a transient stage in the process of vacuome development of these storage cells.Abbreviation ER endoplasmic reticulum  相似文献   

11.
Hydrolases in vacuoles from castor bean endosperm   总被引:22,自引:15,他引:7       下载免费PDF全文
Vacuoles were prepared from endosperm tissue of 4-day-old castor bean seedlings (Ricinus communis var. Hale) and purified on a stepped sucrose gradient. It was shown by assays of marker enzymes that there was only trace contamination of the final preparation by other organelles (mitochondria, glyoxysomes, nuclei, spherosomes, and plastids) and by cytoplasmic components. Hydrolytic enzymes (acid protease, carboxypeptidase, phosphodiesterase, RNAase, phytase and β-glucosidase) were present in the isolated vacuoles in amounts indicating a primarily vacuolar localization in vivo. The vacuoles also contained storage protein and high concentrations of sucrose. The over-all results indicate that the vacuoles from castor bean endosperm are the site of hydrolysis of the constituents of the protein bodies and are a temporary storage compartment for the sucrose produced from fat and protein reserves.  相似文献   

12.
Summary The seasonal occurrence of protein-storage vacuoles in parenchyma cells of the inner bark and leaf tissues of seven softwood species was examined. Previously published results showed that these organelles often fill the phloem parenchyma cells of the inner bark tissues in overwintering hardwoods, whereas they are absent from this tissue during the summer. We hypothesize that the organelles are involved in the storage of reduced nitrogen during wintering, in a manner analogous to protein bodies of seeds. A survey of the phloem and cambial parenchyma tissues in six evergreen softwood species (Pinus strobus, P. sylvestris, Picea abies, P. glauca, Abies balsamea, and Thuja occidentalis) and in one deciduous softwood species (Larix decidua) was conducted. There was a large variation in the degree and timing of protein-storage vacuole formation between the individual genera and species. The organelles were not seen in summer samples of inner bark tissues of any of the genera or species examined. Protein-storage vacuoles were common in the bark tissues of Pinus, Abies and Thuja, occasionally seen in Picea, and rarely found in Larix during the winter. One-year-old leaves were also examined, since in all but Larix they are overwintering structures and can act as potential sites of nitrogen storage. Protein-storage vacuoles were present in Pinus and Thuja leaf tissue in both summer and winter, in Abies during winter only, and were absent from Picea leaf tissue at all times. These results indicate that the formation of protein-storage vacuoles prior to overwintering is not a ubiquitous phenomenon in softwoods.  相似文献   

13.
Summary Electron microscopic studies revealed that major cytological changes in the cortical cells of poplar (Populus euramericana cv. gelrica) began to occur in early September in conjunction with the metabolic transition from the growing to the wintering stage. During this transition, the cells became temporarily rich in endoplasmic reticulum, polysomes and vesicles. As the conspicuous formation of organelles progressed, the large vacuoles became smaller and filled with osmiophilic materials. Undefined organelles (protein-lipid bodies) also increased in number. From late October until March, organelles involved in protein synthesis were sparsely distributed in the cells, indicating that the number of these organelles is probably linked to the seasonal cycle of protein synthesis. In early February, after release from dormancy, fusion of vacuoles proceeded in the cells. The inclusion of organelles and a gradual decrease in the amount of osmiophilic materials in the vacuoles occurred at this stage. Subsequently, the structure of the cells continued to undergo changes to accommodate growth, which occurred in early May.  相似文献   

14.
Storage proteins are deposited into protein storage vacuoles (PSVs) during plant seed development and maturation and stably accumulate to high levels; subsequently, during germination the storage proteins are rapidly degraded to provide nutrients for use by the embryo. Here, we show that a PSV has within it a membrane-bound compartment containing crystals of phytic acid and proteins that are characteristic of a lytic vacuole. This compound organization, a vacuole within a vacuole whereby storage functions are separated from lytic functions, has not been described previously for organelles within the secretory pathway of eukaryotic cells. The partitioning of storage and lytic functions within the same vacuole may reflect the need to keep the functions separate during seed development and maturation and yet provide a ready source of digestive enzymes to initiate degradative processes early in germination.  相似文献   

15.
Park M  Kim SJ  Vitale A  Hwang I 《Plant physiology》2004,134(2):625-639
Protein storage vacuoles (PSVs) are specialized vacuoles devoted to the accumulation of large amounts of protein in the storage tissues of plants. In this study, we investigated the presence of the storage vacuole and protein trafficking to the compartment in cells of tobacco (Nicotiana tabacum), common bean (Phaseolus vulgaris), and Arabidopsis leaf tissue. When we expressed phaseolin, the major storage protein of common bean, or an epitope-tagged version of alpha-tonoplast intrinsic protein (alpha-TIP, a tonoplast aquaporin of PSV), in protoplasts derived from leaf tissues, these proteins were targeted to a compartment ranging in size from 2 to 5 microm in all three plant species. Most Arabidopsis leaf cells have one of these organelles. In contrast, from one to five these organelles occurred in bean and tobacco leaf cells. Also, endogenous alpha-TIP is localized in a similar compartment in untransformed leaf cells of common bean and is colocalized with transiently expressed epitope-tagged alpha-TIP. In Arabidopsis, phaseolin contained N-glycans modified by Golgi enzymes and its traffic was sensitive to brefeldin A. However, trafficking of alpha-TIP was insensitive to brefeldin A treatment and was not affected by the dominant-negative mutant of AtRab1. In addition, a modified alpha-TIP with an insertion of an N-glycosylation site has the endoplasmic reticulum-type glycans. Finally, the early step of phaseolin traffic, from the endoplasmic reticulum to the Golgi complex, required the activity of the small GTPase Sar1p, a key component of coat protein complex II-coated vesicles, independent of the presence of the vacuolar sorting signal in phaseolin. Based on these results, we propose that the proteins we analyzed are targeted to the PSV or equivalent organelle in leaf cells and that proteins can be transported to the PSV by two different pathways, the Golgi-dependent and Golgi-independent pathways, depending on the individual cargo proteins.  相似文献   

16.
We compared the subcellular distribution of native and artificial reticuloplasmins in endosperm, callus, and leaf tissues of transgenic rice (Oryza sativa) to determine the distribution of these proteins among endoplasmic reticulum (ER) and post-ER compartments. The native reticuloplasmin was calreticulin. The artificial reticuloplasmin was a recombinant single-chain antibody (scFv), expressed with an N-terminal signal peptide and the C-terminal KDEL sequence for retrieval to the ER (scFvT84.66-KDEL). We found that both molecules were distributed in the same manner. In endosperm, each accumulated in ER-derived prolamine protein bodies, but also in glutelin protein storage vacuoles, even though glutelins are known to pass through the Golgi apparatus en route to these organelles. This finding may suggest that similar mechanisms are involved in the sorting of reticuloplasmins and rice seed storage proteins. However, the presence of reticuloplasmins in protein storage vacuoles could also be due to simple dispersal into these compartments during protein storage vacuole biogenesis, before glutelin deposition. In callus and leaf mesophyll cells, both reticuloplasmins accumulated in ribosome-coated vesicles probably derived directly from the rough ER.  相似文献   

17.
马占相思子叶离体培养中细胞早期变化的研究   总被引:2,自引:0,他引:2  
用光学和电子显微镜观察马占相思子叶在离体培养中的细胞早期变化,结果表明,未培养的子叶薄壁细胞内充满大量贮藏物质,在脱分化过程中,贮藏物质逐渐减少,细胞核体积增大,液泡蛋白体出现,质体转化为原质体,线粒体,内质网等细胞器数量增加,马脱分化启动后的细胞分裂方式进行了讨论。  相似文献   

18.
A number of recent reports suggest that the functional specialization of plant cells in storage organs can influence subcellular protein sorting, so that the fate of a recombinant protein tends to differ between seeds and leaves. In order to test the general applicability of this hypothesis, we investigated the fate of a model recombinant glycoprotein in the leaves and seeds of a leguminous plant, Medicago truncatula. Detailed analysis of immature seeds by immunofluorescence and electron microscopy showed that recombinant phytase carrying a signal peptide for entry into the endoplasmic reticulum was efficiently secreted from storage cotyledon cells. A second version of the protein carrying a C-terminal KDEL tag for retention in the endoplasmic reticulum was predominantly retained in the ER of seed cotyledon cells, but some of the protein was secreted to the apoplast and some was deposited in storage vacuoles. Importantly, the fate of the recombinant protein in the leaves was nearly identical to that in the seeds from the same plant. This shows that in M. truncatula, the unanticipated partial vacuolar delivery and secretion is not a special feature of seed cotyledon tissue, but are conserved in different specialized tissues. Further investigation revealed that the unexpected fate of the tagged variant of phytase likely resulted from partial loss of the KDEL tag in both leaves and seeds. Our results indicate that the previously observed aberrant deposition of recombinant proteins into storage organelles of seed tissue is not a general reflection of functional specialization, but also depends on the species of plant under investigation. This discovery will have an impact on the production of recombinant pharmaceutical proteins in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.  相似文献   

20.
Ibl V  Stoger E 《Protoplasma》2012,249(2):379-392
Seed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system. Seed cells contain several different storage organelles including the complex and dynamic protein storage vacuoles (PSVs) and other protein bodies (PBs) derived from the endoplasmic reticulum (ER). Storage proteins destined for the PSV may pass through or bypass the Golgi, using different vesicles that follow different routes through the cell. In addition, trafficking may depend on the plant species, tissue and developmental stage, showing that the endomembrane system is capable of massive reorganization. Some SSPs contain sorting signals or interact with membranes or with other proteins en route in order to reach their destination. The ability of SSPs to form aggregates is particularly important in the formation or ER-derived PBs, a mechanism that occurs naturally in response to overloading with proteins that cannot be transported and that can be used to induce artificial storage bodies in vegetative tissues. In this review, we summarize recent findings that provide insight into the formation, function, and fate of storage organelles and describe tools that can be used to study them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号