首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Upon shift-up in temperature, mouse tsFS20 mutant cells with thermolabile ubiquitin-activating enzyme E1 immediately stopped DNA replication and showed cell cycle arrest in S-phase. In contrast, when the cells were permeabilized with lysolecithin after culture at the nonpermissive temperature, they exhibited a normal level of replicative DNA synthesis in vitro. In agreement with this, intracellular pools of deoxyribonucleoside triphosphates were significantly reduced in the cells cultured at the nonpermissive temperature. Even under the permissive conditions, tsFS20 cells were more sensitive to hydroxyurea and alkylating agents, and induced less mutation than the wild-type cells. These results suggest that the ubiquitin system affects DNA replication and repair.  相似文献   

2.
The effect of restrictive temperature on ubiquitin conjugation activity has been studied in cells of ts20, a temperature-sensitive cell cycle mutant of the Chinese hamster cell line E36. Ts20 is arrested in early G2 phase at nonpermissive temperature. Immunoblotting with antibodies to ubiquitin conjugates shows that conjugates disappear rapidly at restrictive temperatures in ts20 mutant but not in wild type E36 cells. The incorporation of 125I-ubiquitin into permeabilized ts20 cells is temperature-sensitive. Addition of extracts of another G2 phase mutant, FM3A ts85, with a temperature-sensitive ubiquitin activation enzyme (E1), to permeabilized ts20 cells at restrictive temperatures fails to complement their ubiquitin ligation activity. This indicates that the lesions in the two mutants are similar. Purified E1 from reticulocytes restores the conjugation activity of heat-inactivated permeabilized ts20 cells. Ubiquitin conjugation activity of cell-free extracts of ts20 cells was temperature-sensitive and could be restored by adding purified reticulocyte E1. Purified reticulocyte E2 or E3, on the other hand, did not restore the ubiquitin conjugation activity of heat-treated ts20 extracts. These results are consistent with the conclusion that ts20 has temperature-sensitive ubiquitin-activating enzyme (E1). The fact that two E1 mutants (ts20 and ts85) derived from different cell lines are arrested at the S/G2 boundary at restrictive temperatures strongly indicates that ubiquitin ligation is necessary for passage through this part of the cell cycle. The temperature thresholds of heat shock protein synthesis of ts20 and wild type E36 cells were identical. The implications of these findings with respect to a suggested role of ubiquitin in coupling between protein denaturation and the heat shock response are discussed.  相似文献   

3.
N Imai  S Kaneda  Y Nagai  T Seno  D Ayusawa  F Hanaoka  F Yamao 《Gene》1992,118(2):279-282
A cDNA encoding the ubiquitin-activating enzyme, E1, was isolated from the mouse mammary carcinoma cell line, FM3A, and shown to complement mutant mouse cells deficient in the enzyme. The 3495-bp cDNA encodes 1058 amino acids (aa), and shares extensive homology with the human E1 enzyme at both the nucleotide and aa sequence levels.  相似文献   

4.
Conjugation of ubiquitin to certain proteins can trigger their degradation in the in vitro reticulocyte system. In order to determine whether ubiquitin conjugation serves as an intermediate step in the turnover of cellular proteins in vivo, it is necessary to isolate proteolytic intermediates, i.e. ubiquitin-protein adducts of specific cellular proteins. While the steady-state level of conjugates of rapidly turning over proteins is relatively high, that of long-lived proteins is presumably extremely low, and therefore undetectable. Therefore, mutant cell lines with conditionally altered function(s) of the ubiquitin system can serve as powerful tools in studying the degradation of stable cellular proteins. We have characterized a temperature sensitive cell cycle arrest mutant cell (ts85) with a thermolabile ubiquitin-activating enzyme (E1; Finley, D., Ciechanover, A., and Varshavsky, A. (1984) Cell 37, 43-55). Following incubation at the restrictive temperature (39.5 degrees C), these cells fail to degrade short-lived proteins (Ciechanover, A., Finley, D., and Varshavsky, A. (1984) Cell 37, 57-66). However, involvement of the ubiquitin system in the turnover of long-lived proteins has not been addressed in these cells. A slow rate of inactivation of E1 in vivo, and significant rate of cell death following long incubation periods at the restrictive temperature, make this question difficult to address experimentally. In the present study we show that incubation of the cells for 1 h at 43 degrees C leads to rapid inactivation of ubiquitin conjugation in the intact mutant cell. Following heat treatment, the cells can be incubated at 39.5 degrees C for at least 6 h in order to study the possible involvement of the system in the turnover of long-lived cellular proteins. The viability of the cells is excellent at the end of the incubation. Following extraction, we have shown that inactivation occurs much more rapidly in the cell lysate in vitro than in the intact cell (t1/2 of 10 min compared to 4 h at 39.5 degrees C). The enzyme from both the mutant cell and the wild-type cell was purified to homogeneity. The molecular mass of the native enzyme from both cells is approximately 220 kDa with a subunit molecular mass of about 108 kDa. The structure of the enzyme is therefore very similar to that purified from rabbit reticulocytes. At the permissive temperature, the enzymes from both cells catalyze ATP-PPi and ATP-AMP exchange in similar kinetics. However, at the high temperature, the mutated enzyme is at least 7-fold less stable than the wild-type enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Mouse G258 mutant stopped both cell growth and the synthesis of lipid-linked oligosaccharide at the Man(3)GlcNAc(2)-P-P-Dolichol at a restricted temperature with a single gene mutation. To clarify the lesion in the G258 mutant, we isolated human genomic DNA transformants of the G258 mutant, which recovered from both defects by way of cell hybridization with X-ray irradiated HeLa cells. We detected a common 1.3-kb product by inter-human specific sequence in the L1 (L1Hs) PCR in the transformants (Kataoka et al., Somat. Cell Mol. Genet., 24, 235-243 (1998)). In the present study, we screened a human mega yeast artificial chromosome (YAC) library by PCR with primers designed according to the 1.3-kb DNA, and selected YAC clone 923f5. Moreover, we found by spheroplast fusion that YAC clone 923f5 complemented both defects of the G258 mutant. Since the human counterpart of the yeast ALG11 gene is localized in the region, the G258 mutant might have a defect in the mouse ALG11 gene.  相似文献   

6.
Ubiquitin, a 76 residue protein, occurs in eucaryotic cells either free or covalently joined to a variety of protein species. Previous work suggested that ubiquitin may function as a signal for attack by proteinases specific for ubiquitin-protein conjugates. We show that the mouse cell line ts85 , a previously isolated cell cycle mutant, is temperature-sensitive in ubiquitin-protein conjugation, and that this effect is due to the specific thermolability of the ts85 ubiquitin-activating enzyme (E1). From E1 thermoinactivation kinetics in mixed (wild-type plus ts85 ) extracts, and from copurification of the determinant of E1 thermolability with E1 in ubiquitin-affinity chromatography, we conclude that the determinant of E1 thermolability is contained within the E1 polypeptide. ts85 cells fail to degrade otherwise short-lived intracellular proteins at the nonpermissive temperature (accompanying paper), demonstrating that degradation of the bulk of short-lived proteins in this higher eucaryotic cell proceeds through a ubiquitin-dependent pathway. We discuss possible roles of ubiquitin-dependent pathways in DNA transactions, the cell cycle, and the heat shock response.  相似文献   

7.
Summary A thermosensitive E. coli mutant is described which has at least two defects in vitro: a thermolabile initiation factor IF3 activity and a modified L-phenylalanine: tRNAPhe ligase (EC 6.1.1.20) activity. These two defects cotransduce and are located near 38 min on the new E. coli map. Thermoresistant revertants showing in vitro reversion for one defect also revert in vitro for the other defect. The thermosensitive mutation is recessive to its wild type allele, and in vitro analysis of wild type/mutant heterodiploïds also show reversion for both defects.  相似文献   

8.
9.
10.
In temperature-sensitive (ts) mutants of mouse FM3A cells, the levels of mutagenesis and survival of cells treated with DNA-damaging agents have been difficult to assess because they are killed after their mutant phenotypes are expressed at the nonpermissive temperature. To avoid this difficulty, we incubated the ts mutant cells at the restrictive temperature, 39 degrees C, for only a limited period after inducing DNA damage. We used ts mutants defective in genes for ubiquitin-activating enzyme (E1), DNA polymerase alpha, and p34(cdc2) kinase. Whereas the latter two showed no effect, E1 mutants were sensitized remarkably to UV light if incubated at 39 degrees C for limited periods after UV exposure. Eighty-five percent of the sensitization occurred within the first 12 h of incubation at 39 degrees C, and more than 36 h at 39 degrees C did not produce any further sensitization. Moreover, while the 39 degrees C incubation gave E1 mutants a moderate spontaneous mutator phenotype, the same treatment significantly diminished the level of UV-induced 6-thioguanine resistance mutagenesis and extended the time necessary for expression of the mutation phenotype. These characteristics of E1 mutants are reminiscent of the defective DNA repair phenotypes of Saccharomyces cerevisiae rad6 mutants, which have defects in a ubiquitin-conjugating enzyme (E2), to which E1 is known to transfer ubiquitin. These results demonstrate the involvement of E1 in eukaryotic DNA repair and mutagenesis and provide the first direct evidence that the ubiquitin-conjugation system contributes to DNA repair in mammalian cells.  相似文献   

11.
We have constructed interspecific somatic cell hybrids between a temperature-sensitive (ts) mutant cell line of mouse FM3A cells, ts85, that has a heat-labile ubiquitin-activating enzyme (E1) and a human diploid fibroblast cell line, IMR-90. A hybrid clone that could grow stably at a nonpermissive temperature (39 degrees C) was obtained. Segregation of the hybrid cells at a permissive temperature (33 degrees C) gave rise to temperature-sensitive clones. The electrophoresis of extracted histones and karyotype analysis of the segregants revealed a close correlation of the ability to grow at 39 degrees C, the presence of uH2A (ubiquitin-H2A semihistone) at 39 degrees C, and the presence of the human X chromosome. One of the hybrid clones that could grow at the nonpermissive temperature contained the X chromosome as the only human chromosome. The sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of affinity-purified E1 showed that this hybrid clone contained both human and mouse type E1. Thus we conclude that the functional gene for human E1 is located on the X chromosome.  相似文献   

12.
According to our current knowledge, protein ubiquitination involves three steps: activation of ubiquitin through formation of an energy-rich bond with an E1 ubiquitin-activating enzyme; and transfer of activated ubiquitin onto E2 ubiquitin-conjugating enzymes, which, in turn, alone, or in combination with E3 ubiquitin-protein ligase enzymes, transfer ubiquitin onto target proteins. A31N-ts20 cells are mouse embryo fibroblasts, thermosensitive for E1. We show here that: (a) the enzymatic activity of the enzyme is heat-inactivatable in vitro; and (b) a major mechanism responsible for E1 inactivation in vivo consists of accelerated destruction. Surprisingly, a >90% reduction in E1 abundance little alters the formation of the bulk of protein-ubiquitin conjugates when A31N-ts20 cells are grown at the nonpermissive temperature, indicating that cautious interpretation of results is required when studying ubiquitination of specific substrates using this cell line. Surprisingly, our data also indicate that, in vivo, ubiquitination of the various protein substrates in A31N-ts20 cells requires different amounts of E1, indicating that this mutant cell line can be used for unveiling the existence of differences in the intimate mechanisms responsible for the ubiquitination of the various cell proteins in vivo, and for providing criteria of reliability when developing in vitro ubiquitination assays for specific proteins.  相似文献   

13.
Mouse ornithine decarboxylase (ODCase) cDNA was expressed at a high level in an Escherichia coli mutant deficient in polyamine biosynthesis. The expression of mouse ornithine decarboxylase relieved the dependence of the mutant on an exogenous source of polyamines, presumably by providing putrescine, the product of the enzyme. The effect on the enzymatic activity of deletions that removed carboxy-terminal amino acids of the protein was determined.  相似文献   

14.
The entry of ecotropic murine leukemia virus (MLV) into cells requires the interaction of the envelope protein (Env) with its receptor, mouse cationic amino acid transporter 1 (mATRC1). An aspartic acid-to-lysine change at position 84 (D84K) of ecotropic Moloney MLV Env abolishes virus binding and infection. We recently identified lysine 234 (rK234) in mATRC1 as a residue that influences virus binding and infection. Here we show that D84K virus infection increased 3,000-fold on cells expressing receptor with an rK234A change and 100,000-fold on cells expressing an rK234D change. The stronger complementation of D84K virus infection by rK234D than by the rK234A receptor suggests that although the major reason for loss of infection of D84K and D84R virus is due to steric hindrance and charge repulsion, the loss of an interaction of D84 with receptor appears to contribute as well. Taken together, these results indicate that D84 is very close to rK234 of mATRC1 in the bound complex and there is likely an interaction between them. The definitive localization of the receptor binding site on SU should facilitate the design of chimeric envelope proteins that target infection to new receptors by replacing the receptor binding site with an exogenous ligand sequence.  相似文献   

15.
Destruction of cyclin B is required to the mitotic and meiotic cycles. A cyclin-specific ubiquitinating system, including ubiquitin-activating enzyme (E1), is thought to be responsible for cyclin B destruction. Here we present the cloning, sequencing and expression analysis of goldfish, Carassius auratus, E1 from goldfish ovary. The cloned cDNA is 4069 bp long and encodes 1059 amino acids. The deduced amino acid sequence is highly homologous to E1 from other species. Recombinant goldfish E1 could transfer ubiquitin to cyclin-selective ubiquitin-conjugating enzyme. Tissue distribution revealed a single 4.0-kb message ubiquitous among tissues.  相似文献   

16.
Had-1 isolated from mouse mammary tumour FM3A cells as a non-permissive cell line to Newcastle disease virus infection is deficient in NDV receptors, and galactosylation of the complex type sugar chains of the glycoproteins is extensively reduced compared to FM3A cells. It is also deficient in UDP-galactose transport into Golgi vesicles. The major neutral glycolipids in FM3A is Lac-Cer, whereas, in Had-1 cell, Glc-Cer is the major glycolipid and the concentration of neutral glycolipids is one-tenth as low as that in FM3A. GM3, GD3 and sialyl i- and I-type lactosaminylceramide are the gangliosides present in both FM3A and Had-1, although their presence in both cells is only in traces. Had-1 contains relatively high N-glycolyl-neuraminic acid. Among the several glycolipids tested, Lac-Cer, Gg-4-Cer and Glc-Cer showed inhibitory effect on proliferation of Had-1 cells, but did not show any appreciable effect on that of FM3A cells. Lac-Cer had the most potent inhibitory effect and this inhibitory effect was completely reversible. While mice injected with 5 x 10(6) cells of FM3A died in one month, those injected of Had-1 cells at the same dose survived for more than 6 months. Thus glycolipids on the cell surface play an essential role during cell growth both in vivo and in vitro.  相似文献   

17.
We devised an in situ assay method for the activity of serine palmitoyltransferase (SPT) that catalyzes the first step in sphingolipid biosynthesis and isolated a temperature-sensitive mutant of Chinese hamster ovary cells with thermolabile SPT. This mutant stopped growing at 40 degrees C after several generations, although the cells grew at 33 and 37 degrees C at rates similar to those of the parent. The SPT activity in cell homogenates of the mutant grown at low temperatures was 4-8% of that in the parent homogenates. When the cells were cultured for several generations at 40 degrees C, the activity in the mutant homogenate became negligible. When cell homogenates were incubated at 45 degrees C before enzyme assay, mutant SPT was more markedly inactivated than parental SPT, indicating that mutant SPT had become thermolabile. The rates of de novo synthesis of sphingolipids in the mutant were much slower at 40 degrees C than at lower temperatures, in contrast to those in the parent. The sphingomyelin content in the mutant cultivated at 40 degrees C for several generations was also less than that at low temperatures. These results indicate that SPT functions in the main pathway for sphingolipid biosynthesis. The temperature-sensitive growth of the mutant defective in sphingolipid synthesis suggests that sphingolipid(s) plays an essential role in cell growth.  相似文献   

18.
The human gene for ubiquitin-activating enzyme E1 (UBE1) was localized by a direct mapping system that combined fluorescence in situ hybridization with replicated R-bands on prometaphase chromosomes. The fluorescent signals were localized to Xp11.3----p11.23. Simple procedures for the detection of R-bands are also described.  相似文献   

19.
Had-1, which was isolated from mouse FM3A carcinoma cells, was a non-permissive mutant cell line to Newcastle disease virus infection. Comparative study of the asparagine-linked sugar chains of the surface glycoproteins of the mutant and its parental cells revealed that galactosylation of the complex-type sugar chains is extensively reduced in the mutant. Assay of galactosyltransferase in the two cell lines, however, showed that the enzymatic activity in Had-1 cells is virtually identical to that in FM3A cells. Somatic cell hybridization analysis indicated that the mutant has the same defect as Chinese hamster ovary cell mutant Lec 8, which is deficient in UDP-galactose transport into Golgi vesicles.  相似文献   

20.
Ubiquitin-activating enzyme, E1, directs the ATP-dependent formation of a thiol ester linkage between itself and ubiquitin. The energy in this bond is ultimately used to attach ubiquitin to various intracellular proteins. We previously reported the isolation of multiple E1s from wheat and the characterization of a cDNA encoding this protein (UBA1). We now report the derived amino acid sequence of two additional members of this gene family (UBA2 and UBA3). Whereas the amino acid sequence of UBA2 is nearly identical to UBA1, the sequence of UBA3 is significantly different. Nevertheless, the protein encoded by UBA3 catalyzes the ATP-dependent activation of ubiquitin in vitro. Comparison of derived amino acid sequences of genes encoding E1 from plant, yeast, and animal tissues revealed 5 conserved cysteine residues, with one potentially involved in thiol ester bond formation. To identify this essential residue, codons corresponding to each of the 5 cysteines in UBA1 were individually altered using site-directed mutagenesis. The mutagenized enzymes were expressed in Escherichia coli and assayed for their ability to activate ubiquitin. Only substitution of the cysteine at position 626 abolishes E1 activity, suggesting that this residue forms the thiol ester linkage with ubiquitin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号