首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The range of lactate dehydrogenase (LDG) isozymes has been studied at the consecutive stages of retina regeneration from pigmented epithelium cells and lens regeneration from iris margin in adult crested newts. It was shown that the spectra of LDG isozymes peculiar to pigment epithelium cells and iris and characterized by the predominance of slowly migrating forms are replaced in the lens and retina regenerates by spectra characterized by the predominance of rapidly migrating isozymes which are peculiar to definitive lens and retina.  相似文献   

2.
Removal of the lens from the eye of an adult newt (Notophthalmus viridescens) is followed by regeneration of a new lens from the dorsal iris epithelial cells at the pupillary margin. This process is dependent upon the neural retina for its normal completion in vivo and in vitro. To examine the relationship between the retina and lens regeneration, we have conducted experiments that delimit the time period during which the retinal presence is critical (in vivo) and have investigated the influence of extracts of the retina on the progress of regeneration (in vitro). In vivo, removal of the retina at day 11 seriously retards further progression of regeneration while removal of the retina at day 15 does not retard regeneration significantly. This defines a "critical period" in regeneration of the lens during which the retina is required. Explantation of regenerates 11 or 12 days after lentectomy to organ culture medium enriched with either crude retinal homogenate or extracts prepared from chick or bovine retinas according to Courty et al. ('85, Biochimie, 67:265-269) reveals that the progress of regeneration can be supported in culture by the crude extract. This is the first demonstration of complete iris-lens transformation in culture in the presence of retinal extract. It is possible that the retina acts indirectly by promoting passage of the iris epithelial cells through the critical number of mitoses required before redifferentiation into lens cells can occur (as proposed by Yamada, '77, Monogr. Dev. Biol., 13:126). It is also possible that the retina acts by directly instructing the iris cells to redifferentiate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Experiments were designed to compare the effects of recombinant newt fibroblast growth factor-1 (rnFGF-1) and recombinant human glial growth factor (rhGGF) on lens and retina regeneration in the eyes of adult newts. Both eyes were retinectomized and lentectomized. Beginning 3 days after the operation, one eye was given either 0.1 microg of rnFGF-1 or 0.1 microg of rhGGF in 1 microl of phosphate-buffered saline (PBS) per injection, three per week. Contralateral operated eyes served as controls and were treated with PBS alone or were not injected. In eyes that were not injected, injected with PBS alone, or with PBS containing rhGGF, regeneration of both the retina and the lens proceeded normally as described in the literature. In these control eyes, the entire retinal pigmented epithelium (RPE) depigmented/dedifferentiated and a retina rudiment formed from which a new retina regenerated by the end of the experiment at day 41 post-operation. Likewise, only a small area of dorsal iris depigmented/dedifferentiated and formed a lens vesicle from which a lens subsequently regenerated. The vitreous remained relatively free of loose cells.In eyes given rnFGF-1, the RPE depigmented/dedifferentiated and formed what appeared to be a retina rudiment but a new retina did not regenerate. Instead, vesicles were seen associated with the retina rudiment. In eyes given rnFGF-1, both the dorsal iris and ventral iris depigmented/dedifferentiated and lens regeneration occurred but the new lenses had abnormal fiber cells and the lens epithelium was very thin or absent. In addition, ectopic lenses usually regenerated in rnFGF-1-treated eyes. An abundance of loose cells were present in the vitreous of rnFGF-1-treated eyes associated largely with the RPE and the dorsal and ventral irises.The results are consistent with the view that the timely expression of FGFs is involved in the depigmentation/dedifferentiation of the RPE and dorsal iris and is necessary for proper regeneration of the lens and neural retina. Continued presence of FGF results in continued and excessive dedifferentiation, resulting in the lack of retina regeneration and abnormal lens regeneration.  相似文献   

4.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

5.
After lentectomy of larval Xenopus laevis , the outer cornea undergoes tissue transformation resulting in formation of a new lens. This lens regeneration is triggered and sustained by neural retina. In the present study, lens-forming transformation of the outer cornea was completed in vitro when the outer cornea was cultured within the lentectomized eye-cup. Well-differentiated lens fiber cells, which showed positive immunofluorescence for total crystallins, were also formed when the outer cornea was cultivated with the retina. No lens tissue was formed when the cornea was cultured alone. Lens-forming transformation, originating from the cornea three and five days after lentectomy, completely regressed when the tissue was isolated in vitro . Fom the present and previous findings, we concluded that, the interaction of corneal cells with the retina plays a decisive role in lens regeneration in situ .  相似文献   

6.
Anuran amphibians can regenerate the retina through differentiation of stem cells in the ciliary marginal zone and through transdifferentiation of the retinal pigmented epithelium. By contrast, the regeneration of the lens has been demonstrated only in larvae of species belonging to the Xenopus genus, where the lens regenerates through transdifferentiation of the outer cornea. Retinal pigmented epithelium to neural retina and outer cornea to lens transdifferentiation processes are triggered and sustained by signaling molecules belonging to the family of the fibroblast growth factor. Both during retina and lens regeneration there is a re-activation of many of the genes which are activated during development of the eye, even though the spatial and temporal pattern of gene expression is not a simple repetition of that found in development.  相似文献   

7.
Abstract. It has been shown that, upon lentectomy or in culture, iris epithelial cells (IECs) of adult newts become converted into lens cells, and this conversion is the basic event of lens regeneration in newts. Whether in situ or in cell culture, the conversion requires the passage of a specific number of cell cycles. The progeny of IECs which fails to traverse this cell-cycle number redifferentiates as IECs in situ. The passage through cell cycles of IECs is associated with progressive alterations of cytoplasm and cell surface, during which the original state of differentiation disappears (dedifferentiation). It is speculated that the altered state of cells caused by proliferation leads to the appearance of factors which interact with the genome and switch the gene activation pattern to that of the lens cell. In this model, developmental controls are geared to the cell-cycle progression and not directly to the activation of lens-characteristic genes. A number of points are raised which speak against the long-held idea that a factor from neural retina induces lens differentiation in IECs. It is proposed that the retinal factor plays the role of growth factor which is essential in the conversion in situ, but not required in the conversion in cell culture. The proposed model is compared with reprogramming of differentiation of some cell lines by cytidine analogs and with ontogenic systems of differentiation control.  相似文献   

8.
In newt lens regeneration, the dorsal iris has lens forming ability and the ventral iris has no such capability, whereas there is no difference in the morphological criteria. To investigate the real aspects of this characteristic lens regeneration in the newt at the cellular level, a useful model system was constructed by transplanting the dorsal and ventral reaggregate derived from singly dissociated pigmented epithelial cells of the iris into the blastema of the forelimb in the newt. The lens was formed from the dorsal reaggregate with high efficiency, but not from the ventral one. No lens formation was observed in the implantation of the reaggregate into the tissue of the intact limbs. In detailed examination of the process of lens formation from the reaggregate, it was shown that tubular formation was the first step in the rearrangement of cells within the reaggregate. This was followed by depigmentation, vesicle formation with active cell growth, and the final step was lens fiber formation by transdifferentiation of epithelial cells composing the lens vesicle. The process was almost the same as in situ lens regeneration except the reconstitution of the two-layered epithelial structure was embodied as flattened tubular formation in the first step. The present study made it possible for the first time to examine lens forming ability in the reaggregate mixed with dorsal and ventral cells, because the formation of a reaggregate was started from singly dissociated cells of the dorsal and ventral cells of the iris. Mixed reaggregate experiments indicated that the existence of the dorsal cells in a cluster within the reaggregate is important in lens formation, and ventral cells showed an inhibitory effect on the formation. The present study demonstrated that the limb system thus constructed was effective for the analysis of lens formation at the cellular level and made it possible to examine the role of dorsal and ventral cells in lens regeneration.  相似文献   

9.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

10.
The localization of a lens forming potency in the iris epithelium was studied by autoradiographic analysis of the distribution of 3H-thymidine labelled cells to be participated in lens regeneration in newts. DNA synthesis started from the dorsal portion of the iris epithelium around 4 days after lentectomy. 5 days after lentectomy, a large number of labelled cells were mostly found in the dorsal sector, showing strong contrast to the ventral and lateral sectors of iris, which contained a few labelled cells. The labelled index (the number of labelled cells/the number of cells in the definite pigmented area of the iris epithelium) of the dorsal sector attained the highest value, 29.7 ± 2.35, on day 7 after lentectomy, and dropped temporarily. This was followed by the second peak on day 12. The dorso-ventral ratio of the labelled index reached to the highest value, 6.87 ± 0.67, on day 5. This ratio decreased rapidly after the completion of a lens rudiment, and it became about 1. In “chase” experiments by diluting the radio-isotope with excess cold thymidine, it was obviously shown that most of the cells labelled with the radio-isotope and distributed in the dorsal marginal iris 5 days after lentectomy participated in the formation of a lens regenerate during the period of chasing. From these results, the following conclusion was drawn. The iris epithelium consists of at least 2 different cell populations; one is capable of transformation into lens cells and is distributed mostly in the dorsal portion of the iris epithelium, while the other has no potency for transformation and is able to grow to compensate a loss of the dorsal marginal cells which transformed into lens cells during the process of lens regeneration.  相似文献   

11.
The ectodermal eyes, 45–55 μm in diameter, of the cnidarian hydrozoan Cladonema radiatum Dujardin possess a lens approximately 15 μm in diameter enveloped by an eyecup (retina). An overlying layer of intensely vacuolated distal process of the adjoining epithelial cells forms a transparent cornea. The eyecup is composed of three cell types: basal cells, melanin-containing pigment cells, and photoreceptor cells. The last two cell types occur in the ratio of approximately 2:1. Histogenesis of the eye both during ontogeny and regeneration is described from light and electron microscopic investigations. During ontogeny the cell types forming the retina are derived from a compact group of morphologically undifferentiated cells, but during regeneration a primordium is formed by regeneration cells. In both cases the lens is built from distal nonnucleated cytoplasmic portions pinched off from the pigment cells. The cornea is formed by distal lamellar processes of the ocellus adjoining the epithelial cells. Through EM-histochemical methods (silver impregnation and DOPA-oxidase reaction) the pigment of the chromatophores of the retina was identified as melanin.  相似文献   

12.
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.  相似文献   

13.
The spectrum of LDH isozymes was studied at the successive stages of retinal regeneration from the pigment epithelium and lens cells from the iris margin in the adults Pleurodeles waltlii. The combination of two methods, electrophoresis and immunofluorescence, has revealed the slow and rapid LDH isozymes with different intensity of histochemical staining in cells of the tissues under study (pigment epithelium, retina, iris and lens). During the regeneration the spectra of LDH isozymes peculiar to the pigment epithelium and iris and characterized by the predominance of slow forms were substituted by those peculiar to the retina and iris and characterized by the predominance of rapid forms. The rearrangement is realized in the proliferative phase during the transformation of one cell type into another.  相似文献   

14.
The regeneration of lens tissue from the iris of newts has become a classical model of developmental plasticity, although little is known about the corresponding plasticity of the mammalian iris. We here demonstrate and characterize multipotent cells within the iris pigment epithelium (IPE) of postnatal and adult rodents. Acutely-isolated IPE cells were morphologically homogeneous and highly pigmented, but some produced neurospheres which expressed markers characteristic of neural stem/progenitor cells. Stem/progenitor cell markers were also expressed in the IPE in vivo both neonatally and into adulthood. Inner and outer IPE layers differentially expressed Nestin (Nes) in a manner suggesting that they respectively shared origins with neural retina (NR) and pigmented epithelial (RPE) layers. Transgenic marking enabled the enrichment of Nes-expressing IPE cells ex vivo, revealing a pronounced capacity to form neurospheres and differentiate into photoreceptor cells. IPE cells that did not express Nes were less able to form neurospheres, but a subset initiated the expression of pan-neural markers in primary adherent culture. These data collectively suggest that discrete populations of highly-pigmented cells with heterogeneous developmental potencies exist postnatally within the IPE, and that some of them are able to differentiate into multiple neuronal cell types.  相似文献   

15.
Lens regeneration in adult salamanders occurs at the pupillary margin of the mid-dorsal iris where pigmented epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. It is not understood how the injury caused by removal of the lens (lentectomy) in one location is linked to initiating the response in a different spatial location (dorsal iris) and to this particular sector. We propose that the blood provides a link between the localised coagulation and signal transduction pathways that lead to regeneration. A transmembrane protein (tissue factor) is expressed in a striking patch-like domain in the dorsal iris of the newt that localises coagulation specifically to this location, but is not expressed in the axolotl, a related species that does not show thrombin activation after lentectomy and cannot regenerate its lens. Our hypothesis is that tissue factor expression localises the initiation of regeneration through the activation of thrombin and the recruitment of blood cells, leading to local growth factor release. This is the first example of gene expression in a patch of cells that prefigures the location of a regenerative response, and links the immune system with the initiation of a regenerative program.  相似文献   

16.
17.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

18.
After the discovery that in adult salamanders following lentectomy a new, functional lens develops by transdifferentiation (cell-type conversion) of previously depigmented epithelial cells of the iris (Wolffian lens regeneration), this phenomenon has been intensively studied by various experimental approaches. During the last two decades it was shown that pleiomorphic aggregates of atypical lens cells (lentoids) differentiated in reaggregates of dissociated cells of the chick neural retina and in spread cell cultures of the pigmented epithelium of the iris and retina, of the neural retina and the pineal gland of the chick embryo. The neural retina of human fetuses and adults also displayed this capacity. We showed that lentoids developed at a low incidence in renal isografts of rat embryonic shields or isolated embryonic ectoderm and of lentectomized eyes of rat fetuses, as well as in organ cultures of rat embryonic shields in chemically defined media. The addition of transferrin significantly increased the incidence of differentiation of lentoids in explants. In both renal isografts and explants in vitro a continuous transformation of retinal epithelial cells into atypical lens cells was observed. In renal isografts lentoids were also observed to originate from the ependyma of the brain ventricle. All tissues having the capacity to convert into lens cells belong to the diencephalon in a broad sense. Evolutionary aspects of this feature are discussed.  相似文献   

19.
Since neural retina stimulates regeneration of a lens from the dorsal iris in newts, RNA and protein synthesis in the neural retina was investigated during this process. Incorporation of 3H-uridine and 3H-leucine using liquid scintillation counting was employed to compare RNA and protein synthesis in the neural retina from sham-operated control eyes with that in eyes during lens regeneration. An initial increase in 3H-uridine uptake was seen one to three days after lentectomy. This was followed by greater incorporation of 3H-leucine, indicating increased protein synthesis between 5 to 15 days after lens removal. A decrease in 3H-uridine uptake was also seen at 5 to 12 days after lentectomy. After 20 days both the RNA and protein synthesis returned to the normal level. Since the increase in protein synthesis is preceded by an increase in RNA synthesis, the two processes might be related. The results indicate significant changes in the synthesis of macromolecules by the neural retina following lentectomy. These may be indirectly related to the production of the neural retinal factor with stimulates lens differentiation.  相似文献   

20.
Expression of fibronectin (Fn) during eye tissue regeneration in the newt after retinal detachment and lens removal was studied by immunohistochemistry. Proliferation of cells involved in eye tissue regeneration was studied using autoradiography. Fn was detected around the cell membranes of undifferentiated proliferating and migrating cells in ciliary body of the iris and growth zone of the retina. Redistribution of Fn was observed in proliferating cells of the dorsal iris participating in lens regeneration. Fn appeared on the apical surface of proliferating redifferentiating pigment epithelium (PE) cells at the periphery of the eye and over the whole surface of proliferating PE cells in the central part of the eye. The Fn level in the Bruch's membrane decreased in the area of transdifferentiating cells detachment from PE layer (in the lower part of the eye) but continued to be stable in the area of PE cell redifferentiation (at the periphery of the eye). The role of Fn is discussed in relation to transdifferentiation, proliferation and migration of cells in the regenerating eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号