首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Glycosyl hydrolase family 1 β-glucosidases are important enzymes that serve many diverse functions in plants including defense, whereby hydrolyzing the defensive compounds such as hydroxynitrile glucosides. A hydroxynitrile glucoside cleaving β-glucosidase gene (Llbglu1) was isolated from Leucaena leucocephala, cloned into pET-28a (+) and expressed in E. coli BL21 (DE3) cells. The recombinant enzyme was purified by Ni–NTA affinity chromatography. The optimal temperature and pH for this β-glucosidase were found to be 45 °C and 4.8, respectively. The purified Llbglu1 enzyme hydrolyzed the synthetic glycosides, pNPGlucoside (pNPGlc) and pNPGalactoside (pNPGal). Also, the enzyme hydrolyzed amygdalin, a hydroxynitrile glycoside and a few of the tested flavonoid and isoflavonoid glucosides. The kinetic parameters K m and V max were found to be 38.59 μM and 0.8237 μM/mg/min for pNPGlc, whereas for pNPGal the values were observed as 1845 μM and 0.1037 μM/mg/min. In the present study, a three dimensional (3D) model of the Llbglu1 was built by MODELLER software to find out the substrate binding sites and the quality of the model was examined using the program PROCHEK. Docking studies indicated that conserved active site residues are Glu 199, Glu 413, His 153, Asn 198, Val 270, Asn 340, and Trp 462. Docking of rhodiocyanoside A with the modeled Llbglu1 resulted in a binding with free energy change (ΔG) of ?5.52 kcal/mol on which basis rhodiocyanoside A could be considered as a potential substrate.  相似文献   

2.
Legume plants develop specialized root organs, the nodules, through a symbiotic interaction with rhizobia. The developmental process of nodulation is triggered by the bacterial microsymbiont but regulated systemically by the host legume plants. Using ethylmethane sulfonate mutagenesis as a tool to identify plant genes involved in symbiotic nodule development, we have isolated and analyzed five nodulation mutants, Ljsym74-3, Ljsym79-2, Ljsym79-3, Ljsym80, and Ljsym82, from the model legume Lotus japonicus. These mutants are defective in developing functional nodules and exhibit nitrogen starvation symptoms after inoculation with Mesorhizobium loti. Detailed observation revealed that infection thread development was aborted in these mutants and the nodules formed were devoid of infected cells. Mapping and complementation tests showed that Ljsym74-3, and Ljsym79-2 and Ljsym79-3, were allelic with reported mutants of L. japonicus, alb1 and crinkle, respectively. The Ljsym82 mutant is unique among the mutants because the infection thread was aborted early in its development. Ljsym74-3 and Ljsym80 were characterized as mutants with thick infection threads in short root hairs. Map-based cloning and molecular characterization of these genes will help us understand the genetic mechanism of infection thread development in L. japonicus.  相似文献   

3.
Lotus japonicus was shown to contain the two nitrile glucosides rhodiocyanoside A and rhodiocyanoside D as well as the cyanogenic glucosides linamarin and lotaustralin. The content of cyanogenic and nitrile glucosides in L. japonicus depends on plant developmental stage and tissue. The cyanide potential is highest in young seedlings and in apical leaves of mature plants. Roots and seeds are acyanogenic. Biosynthetic studies using radioisotopes demonstrated that lotaustralin, rhodiocyanoside A, and rhodiocyanoside D are derived from the amino acid l-Ile, whereas linamarin is derived from Val. In silico homology searches identified two cytochromes P450 designated CYP79D3 and CYP79D4 in L. japonicus. The two cytochromes P450 are 94% identical at the amino acid level and both catalyze the conversion of Val and Ile to the corresponding aldoximes in biosynthesis of cyanogenic glucosides and nitrile glucosides in L. japonicus. CYP79D3 and CYP79D4 are differentially expressed. CYP79D3 is exclusively expressed in aerial parts and CYP79D4 in roots. Recombinantly expressed CYP79D3 and CYP79D4 in yeast cells showed higher catalytic efficiency with l-Ile as substrate than with l-Val, in agreement with lotaustralin and rhodiocyanoside A and D being the major cyanogenic and nitrile glucosides in L. japonicus. Ectopic expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in L. japonicus resulted in a 5- to 20-fold increase of linamarin content, whereas the relative amounts of lotaustralin and rhodiocyanoside A/D were unaltered.  相似文献   

4.
Many plants produce cyanogenic glucosides as part of their chemical defense. They are alpha-hydroxynitrile glucosides, which release toxic hydrogen cyanide (HCN) upon cleavage by endogenous plant beta-glucosidases. In addition to cyanogenic glucosides, several plant species produce beta- and gamma-hydroxynitrile glucosides. These do not release HCN upon hydrolysis by beta-glucosidases and little is known about their biosynthesis and biological significance. We have isolated three beta-hydroxynitrile glucosides, namely (2Z)-2-(beta-D-glucopyranosyloxy)but-2-enenitrile and (2R,3R)- and (2R,3S)-2-methyl-3-(beta-D-glucopyranosyloxy)butanenitrile, from leaves of Ribesuva-crispa. These compounds have not been identified previously. We show that in several species of the genera Ribes, Rhodiola and Lotus, these beta-hydroxynitrile glucosides co-occur with the L-isoleucine-derived hydroxynitrile glucosides, lotaustralin (alpha-hydroxynitrile glucoside), rhodiocyanosides A (gamma-hydroxynitrile glucoside) and D (beta-hydroxynitrile glucoside) and in some cases with sarmentosin (a hydroxylated rhodiocyanoside A). Radiolabelling experiments demonstrated that the hydroxynitrile glucosides in R. uva-crispa and Hordeum vulgare are derived from L-isoleucine and L-leucine, respectively. Metabolite profiling of the natural variation in the content of cyanogenic glucosides and beta- and gamma-hydroxynitrile glucosides in wild accessions of Lotus japonicus in combination with genetic crosses and analyses of the metabolite profile of the F2 population provided evidence that a single recessive genetic trait is most likely responsible for the presence or absence of beta- and gamma-hydroxynitrile glucosides in L. japonicus. Our findings strongly support the notion that the beta- and gamma-hydroxynitrile glucosides are produced by diversification of the cyanogenic glucoside biosynthetic pathway at the level of the nitrile intermediate.  相似文献   

5.
Dong ZC  Zhao Z  Liu CW  Luo JH  Yang J  Huang WH  Hu XH  Wang TL  Luo D 《Plant physiology》2005,137(4):1272-1282
Floral patterning in Papilionoideae plants, such as pea (Pisum sativum) and Medicago truncatula, is unique in terms of floral organ number, arrangement, and initiation timing as compared to other well-studied eudicots. To investigate the molecular mechanisms involved in the floral patterning in legumes, we have analyzed two mutants, proliferating floral meristem and proliferating floral organ-2 (pfo-2), obtained by ethyl methanesulfonate mutagenesis of Lotus japonicus. These two mutants showed similar phenotypes, with indeterminate floral structures and altered floral organ identities. We have demonstrated that loss of function of LjLFY and LjUFO/Pfo is likely to be responsible for these mutant phenotypes, respectively. To dissect the regulatory network controlling the floral patterning, we cloned homologs of the ABC function genes, which control floral organ identity in Arabidopsis (Arabidopsis thaliana). We found that some of the B and C function genes were duplicated. RNA in situ hybridization showed that the C function genes were expressed transiently in the carpel, continuously in stamens, and showed complementarity with the A function genes in the heterogeneous whorl. In proliferating floral meristem and pfo-2 mutants, all B function genes were down-regulated and the expression patterns of the A and C function genes were drastically altered. We conclude that LjLFY and LjUFO/Pfo are required for the activation of B function genes and function together in the recruitment and determination of petals and stamens. Our findings suggest that gene duplication, change in expression pattern, gain or loss of functional domains, and alteration of key gene functions all contribute to the divergence of floral patterning in L. japonicus.  相似文献   

6.
Petal Development in Lotus japonicus   总被引:1,自引:0,他引:1  
Previous studies have demonstrated that petal shape and size in legume flowers are determined by two separate mechanisms, dorsoventral (DV) and organ internal (IN) asymmetric mechanisms, respectively. However, little is known about the molecular mechanisms controlling petal development in legumes. To address this question, we investigated petal development along the floral DV axis in Lotus japonicus with respect to cell and developmental biology by comparing wild‐type legumes to mutants. Based on morphological markers, the entire course of petal development, from initiation to maturity, was grouped to define 3 phases or 13 stages. In terms of epidermal micromorphology from adaxial surface, mature petals were divided into several distinct domains, and characteristic epidermal cells of each petal differentiated at stage 9, while epidermal cells of all domains were observed until stage 12. TCP and MIXTA‐like genes were found to be differentially expressed in various domains of petals at stages 9 and 12. Our results suggest that DV and IN mechanisms interplay at different stages of petal development, and their interaction at the cellular and molecular level guides the elaboration of domains within petals to achieve their ideal shape, and further suggest that TCP genes determine petal identity along the DV axis by regulating MIXTA‐like gene expression.  相似文献   

7.
8.
Lotus japonicus. Received 25 September 2000/ Accepted in revised form 9 October 2000  相似文献   

9.
Nitrate assimilation in Lotus japonicus   总被引:3,自引:0,他引:3  
This paper summarizes some recent advances in the understanding of nitrate assimilation in the model legume Lotus japonicus. First, different types of experimental evidence are presented that emphasize the importance of the root in the nitrate-reducing assimilatory processes in this plant. Secondly, the main results from an ethyl methanesulphonate mutagenesis programme are presented. In this programme, chlorate-resistant and photorespiratory mutants were produced and characterized. The phenotype of one particular chlorate-resistant mutant suggested the importance of a low-affinity nitrate transport system for growth of L. japonicus plants under nitrate nutrition. The phenotype of photorespiratory mutants, affected in all forms of plastid glutamine synthetase in leaves, roots, and nodules, indicated that plastid glutamine synthetase was not required for primary nitrate assimilation nor for the symbiotic associations of the plant (nodulation, mycorrhization), provided photorespiration was suppressed. However, the phenotype of these mutants confirmed that plastid glutamine synthetase was required for the reassimilation of ammonium released by photorespiration. Finally, different aspects of the relationship between nitrate assimilation and osmotic stress in L. japonicus are also discussed, with specific reference to the biosynthesis of proline as an osmolyte.  相似文献   

10.
Lotus japonicus , a model legume plant, was reviewed and compared with Medicago truncatula and soybean. Several mutant libraries are being analyzed, focusing on the nodulation mechanism. The first plant nodulation gene nin was cloned by Ac-transposon tagging. Soybean remains as the most studied legume, especially in relation to the disease resistance genes. However, Lotus japonicus offers several advantages for molecular genetics, and the remained lackings were recently filled up, namely 1) an appropriate crossing partner for Gifu, accession Miyakojima, was proposed for its 4% polymorphism and smooth recombining ability; 2) a genome library with long inserts, average of 140 kb, and 8.2 genome equivalents of library size, has been established; and 3) the rather low polymorphic rate between Gifu and Miyakojima can be overcome with the HEGS (High Efficiency Genome Scanning). With this infrastructure, positional cloning of the causative genes of several mutant libraries will be accomplished in a short term. Genome sizes of L. japonicus acc. Gifu and Miyakojima were determined with high accuracy, to be 494±0 MB and 512±1 MB, respectively. The feasibility of constructing a physical map of the entire genome, for functional genomics, was discussed. Received 5 September 2000/ Accepted in revised form 11 October 2000  相似文献   

11.
The neutral pH optimum beta-glucosidases of mammalian liver and almonds are each capable of hydrolyzing a number of plant glucosides, including L-picein (p-hydroxyacetophenone-beta-D-glucoside) and prunasin (D-mandelonitrile-beta-D-glucoside). Taking advantage of the marked differences in the spectra of the substrate/product pairs of L-picein/p-hydroxyacetophenone and prunasin/mandelonitrile, we have devised spectrophotometric assays that permit the continuous monitoring at pH 7.0 of p-hydroxyacetophenone (piceol) release from L-picein by guinea pig hepatic cytosolic beta-glucosidase and mandelonitrile from prunasin by almond beta-glucosidase. When L-picein hydrolysis was monitored at 320 nm and prunasin at 282 nm, the molar absorption coefficients determined for their products, namely piceol and mandelonitrile, were 3200 and 1360 M-1 cm-1, respectively. The kinetic parameter Km and Vmax values obtained using these spectrophotometric procedures for the guinea pig liver cytosolic beta-glucosidase acting on L-picein were 0.88 mM and 5.29 x 10(5) units/mg protein and for the almond beta-glucosidase acting on prunasin, Km 1.1 mM and Vmax 5.24 x 10(6) units/mg protein. These values agreed well with previously reported values obtained using less convenient, discontinuous assay procedures.  相似文献   

12.
Legumes and rhizobium bacteria form a symbiosis that results in the development of nitrogen-fixing nodules on the root of the host plant. The earliest plant developmental changes are triggered by bacterially produced nodulation (Nod) factors. Within minutes of exposure to Nod factors, sharp oscillations in cytoplasmic calcium levels (calcium spiking) occur in epidermal cells of several closely related legumes. We found that Lotus japonicus, a legume that follows an alternate developmental pathway, responds to both its bacterial partner and to the purified bacterial signal with calcium spiking. Thus, calcium spiking is not restricted to a particular pathway of nodule development and may be a general component of the response of host legumes to their bacterial partner. Using Nod factor-induced calcium spiking as a tool to identify mutants blocked early in the response to Nod factor, we show that the L. japonicus Ljsym22-1 mutant but not the Ljsym30 mutant fails to respond to Nod factor with calcium spiking.  相似文献   

13.
The major role of 'model plants' is to provide knowledge and technologies obtained in related systems to researchers studying crop plants. Lotus japonicus was chosen as a model system first for legume genetics and then for legume genomics. A large number of L. japonicus mutants that have alterations in legume-specific phenomena have been generated and phenotypically characterized, and genomics has drastically accelerated the molecular characterization of these mutants. Substantial resources of information and experimental materials, including genomic and cDNA sequences, corresponding DNA libraries and high-density linkage maps demonstrate that L. japonicus is an excellent model system. Transfer of knowledge from L. japonicus to other legumes, especially crop legumes, is a matter for urgent consideration.  相似文献   

14.
15.
In this study, we report the first dataset of phosphoproteins of the seeds of a model plant, Lotus japonicus. This dataset might be useful in studying the regulatory mechanisms of seed germination in legume plants. By proteomic analysis of seeds following water absorption, we identified a total of 721 phosphopeptides derived from 343 phosphoproteins in cotyledons, and 931 phosphopeptides from 473 phosphoproteins in hypocotyls. Kinase‐specific prediction analyses revealed that different kinases were activated in cotyledons and hypocotyls. In particular, many peptides containing ATM‐kinase target motifs, X‐X‐pS/pT‐Q‐X‐X, were detected in cotyledons. Moreover, by real‐time RT‐PCR analysis, we found that expression of a homolog of ATM kinase is upregulated specifically in cotyledons, suggesting that this ATM‐kinase homolog plays a significant role in cell proliferation in the cotyledons of L. japonicus seeds. The data have been deposited to the ProteomeXchange with identifier PXD000053 ( http://proteomecentral.proteomexchange.org/dataset/PXD000053 ).  相似文献   

16.
17.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

18.
Holligan D  Zhang X  Jiang N  Pritham EJ  Wessler SR 《Genetics》2006,174(4):2215-2228
The largest component of plant and animal genomes characterized to date is transposable elements (TEs). The availability of a significant amount of Lotus japonicus genome sequence has permitted for the first time a comprehensive study of the TE landscape in a legume species. Here we report the results of a combined computer-assisted and experimental analysis of the TEs in the 32.4 Mb of finished TAC clones. While computer-assisted analysis facilitated a determination of TE abundance and diversity, the availability of complete TAC sequences permitted identification of full-length TEs, which facilitated the design of tools for genomewide experimental analysis. In addition to containing all TE types found in previously characterized plant genomes, the TE component of L. japonicus contained several surprises. First, it is the second species (after Oryza sativa) found to be rich in Pack-MULEs, with >1000 elements that have captured and amplified gene fragments. In addition, we have identified what appears to be a legume-specific MULE family that was previously identified only in fungal species. Finally, the L. japonicus genome contains many hundreds, perhaps thousands of Sireviruses: Ty1/copia-like elements with an extra ORF. Significantly, several of the L. japonicus Sireviruses have recently amplified and may still be actively transposing.  相似文献   

19.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号