共查询到20条相似文献,搜索用时 15 毫秒
1.
Richard H. Matthews Marlinda Sardovia Neil J. Lewis Robert Zand 《生物化学与生物物理学报:生物膜》1975,394(2):182-192
Curve-fitting procedures indicated that exo-2-amino-bicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) modified V and Km for one of two systems serving for histidine transport into the S37 ascites tumor cells. When this system was obliterated by leucine in the medium, BCH had no effect on histidine transport.Curve-fitting procedures similarly suggest N-methyl-α-aminoisobutyric acid affected the Km and V values for the other histidine-transporting system and that carboxymethylhistidine (His(Cm)) inhibited both transport systems. His(Cm) further inhibited histidine uptake into leucine-inhibited cells. Km and V values were altered simultaneously in the presence of several inhibitory analogs.Alanine methyl ester markedly inhibited high-concentration histidine uptake, whereas leucine methyl ester markedly inhibited low-concentration histidine uptake.The present results confirm earlier suggestions that our high c system is Christensen's A system and our low c system his L system. We also confirm a very high degree of specificity of N-methyl-α-aminoisobutyric acid for the A or high c system, and of BCH for the L or low c system. We suggest the utility of combining two approaches to the study of transport system properties; use of specific analogs and modification of biphasic plots. We demonstrate that the carboxyl group is not a prerequisite molecular feature for inhibitory interaction with the A or L system. 相似文献
2.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further. 相似文献
3.
4.
Histidine uptake and exchange in S 37 ascites tumor cells 总被引:1,自引:0,他引:1
5.
Methionine had been observed to interact with two principal transport systems for amino acids in mammalian cells, the A and L systems. The present study of methionine transport and of exchange processes through system A arose in the course of a study to define the specificity of a transinhibition effect caused by cysteine. Methionine uptake through two transport systems in the S37 cell was confirmed by the occurrence of a biphasic double-reciprocal plot for labeled methionine uptake. Preloading cells with methionine stimulated labeled histidine uptake through systems A and L. Efflux of labeled methionine from cells was stimulated by histidine in a biphasic manner, so that bothe systems A and L can be used for exchange when methionine is the intracellular amino acid. Aminocycloheptanecarboxylic acid elicited exchange efflux of labeled methionine only through system L. ALPHA-Aminoisobutyric acid and N-methyl-alpha-aminoisobutyric acid both stimulated efflux of labeled N-methyl-alpha-aminoisobutyric acid from S37 cells. These findings are interpreted a showing that transport system A is capable of functioning as an exchange system depending upon the identity of intracellular and extracellular substrates available. 相似文献
6.
Methionine had been observed to interact with two principal transport systems for amino acids in mammalian cells, the A and L systems. The present study of methionine transport and of exchange processes through system A arose in the course of a study to define the specificity of a transinhibition effect caused by cysteine.Methionine uptake through two transport systems in the S37 cell was confirmed by the occurrence of a biphasic double-reciprocal plot for labeled methionine uptake. Preloading cells with methionine stimulated labeled histidine uptake through both systems A and L. Efflux of labeled methionine from cells was stimulated by histidine in a biphasic manner, so that both systems A and L can be used for exchange when methionine is the intracellular amino acid. Aminocycloheptanecarboxylic acid elicited exchange efflux of labeled methionine only through system L. α-Aminoisobutyric acid and both stimulated efflux of labeled from S37 cells. These findings are interpreted a showing that transport system A is capable of functioning as an exchange system depending upon the identity of intracellular and extracellular substrates available. 相似文献
7.
Vincristine, other periwinkle alkaloids, and colchicine partially inhibit the energy dependent transport of α-aminoisobutyric acid in Ehrlich ascites tumor cells. The properties of this phenomenon were characterized in detail for vincristine. Maximum depression of the steady-state intracellular α-aminoisobutyric acid level was achieved with a vincristine concentration of > 0.5 m̈M. The inhibitory effect of vincristine increases as the extracellular α-aminoisobutyric acid concentration is increased reaching a maximum, however, of only ∼25% at a level of 5 mM, leaving a large gradient for α-aminoisobutyric acid across the cell membrane. Vincristine produced an asymmetrical effect on the bidirectional fluxes decreasing the initial uptake rate, while increasing the efflux of α-aminoisobutyric acid. Inhibition of net α-aminoisobutyric acid transport by vincristine was partially reversible (∼40%). Colchicine (50 m̈M) reduced the steady-state α-aminoisobutyric acid level by 30%, an effect that was not reversible. Inhibition by vinleurosine and vinrosidine was comparable to that of vincristine. Addition of glucose to the medium resulted in a small, but significant, decrease in the inhibitory effects of both vincristine and colchicine. The data indicate that these agents inhibit a small component of the uphill transport of α-aminoisobutyric acid in Ehrlich ascites tumor cells. The inhibitory effect of vincristine cannot be attributed to an increase in the passive permeability of the cell membrane to this agent. Rather, the data along with other studies from this laboratory suggest that vincristine reduces the energy-dependent transport of α-aminoisobutyric acid by either inhibiting cellular energy metabolism or by inhibiting the coupling of energy-metabolism to the transport of this amino acid and raises the possibility that cellular microtubules play a role in these processes. 相似文献
8.
9.
10.
11.
The steady state transport and distribution of chloride between the intracellular and extracellular phases was investigated when the extracellular chloride concentration was varied by isosmotic replacement with nitrate, bromide and acetate. The results of these experiments show that chloride transport, measured by uptake of 36Cl, is sensitive to the replacement anion. In the presence of nitrate, chloride transport is a linear function of the extracellular chloride concentration. The relationship between chloride transport and extracellular chloride in the presence of bromide is concave upward which suggests that this anion inhibits chloride movement. However, when acetate replaces chloride, the relationship between chloride transport and extracellular chloride is concave downward. The chloride distribution ratio of cells incubated in 145-155mM chloride medium is 0.386 and is not effected by the replacement of chloride with nitrate, bromide or acetate. These findings are consistent with the assertion that chloride transport is composed of two parallel pathways, a diffusional plus a saturating, mediated component. Of the total chloride flux (9.1 mmoles Cl-/kg dry weight per minute) measured in chloride medium (145-155 mM Cl-), the mediated component represents 40% and the diffusional component 60%. 相似文献
12.
(1) (DL)-Propranolol and Ca2+ are shown to alter the transmembrane potential difference of Ehrlich ascites tumor cells as measured by means of the cyanine dye, 3,3'-dipropyl-2,2'-thiodicarbocyanine iodide, whose fluorescent intensity changes as a function of membrane potential. (2) The changes in membrane potential elicited by these agents are dependent of the external K+ concentration in a manner which suggest that the potential changes result from a specific increase in the permeability of the plasma membrane to K+. (3) Na+-dependent amino acid transport in the presence of propranolol can be modulated by varying the external K+ concentration (K+o). The initial rate of uptake is stimulated by propranolol at low K+o and inhibited at high K+o. The change in transport rate is nearly directly proportional to the natural logarithm of [K+]o in the presence of propranolol. (4) ATP depletion of the cells by preincubation with rotenone abolishes the changes in fluorescence and amino acid uptake seen with propranolol as a function of K+o. Restoration of cellular ATP with glucose in presence of Ca2+ restores both fluorescence and amino acid transport changes which occur in response to propranolol. (5) The fluorescence changes and amino acid transport changes in response to propranolol are pH dependent, with little effect seen at pH6. (6) It is concluded that the rate of Na+-dependent amino acid uptake is a function of membrane potential and is dependent on the electrochemical potential difference for Na+. 相似文献
13.
Recent investigations have indicated that cellular rheogenic properties may interfere with the correct estimation of Na+ and amino transport stoichiometry. We have reevaluated the stoichiometry of Na+ and alpha-aminoisobutyric acid (alpha-AIB) cotransport in Ehrlich ascites tumor cells depleted of Na+ and ATP by incubation in Na+-free HEPES-buffered medium (pH 7.2) containing 160 mM K+ and 2.5 microM valinomycin. Transfer of the cells to a medium with 10 mM 22Na+, 10 mM 3H-AIB, and 150 mM K+ resulted in an enhancement of Na+ flux above basal levels, which represents 0.6 of the AIB uptake. Under these conditions the membrane potential, -7.0 +/- 0.1 mV (SEM), does not change with the addition of AIB, -7.3 +/- 0.6 mV (SEM). HgCl2 (10 microM) added to the medium inhibited AIB flux and AIB-stimulated Na+ flux by 45-50% but did not change the coupling ratio. HgCl2 (10 microM) does not inhibit the basal Na+ flux nor does it affect cellular Na+ or K+ content. In physiological medium cotransport is electrogenic. The membrane potential of Ehrlich cells in physiological medium is -22.3 +/- 0.8 mV (SEM) and depolarizes to -16.7 +/- 0.7 mV (SEM) upon addition of AIB. Under these conditions the coupling ratio was highly variable but the ratio of codepression is 0.90 +/- 0.02 (SEM) in the presence of HgCl2 (10 microM). These results are consistent with a model (Smith and Robinson, 1981) in which the stoichiometry is one cosubstrate molecule per molecule of alpha-AIB. We suggest that H+ provides the alternative cosubstrate in this low Na+ environment and that in high Na+ medium the Na+:AIB stoichiometry approaches 1:1. 相似文献
14.
15.
Calcium transport in intact Ehrlich ascites tumor cells 总被引:9,自引:0,他引:9
16.
17.
18.
19.
C Levinson 《Journal of cellular physiology》1984,121(2):442-448
Previous studies have shown that mediated Cl- transport which occurs by at least two processes (Cl- -dependent cation cotransport and Cl- self-exchange) becomes progressively inhibited when extracellular Cl- exceeds about 60 mM (Hoffmann et al., 1979). To account for this type of kinetic behavior, that is, self-inhibition, an anion transport system possessing two sites, a high affinity transport site and a lower affinity modifier site is suggested (Dalmark, 1976). In the present experiments we have attempted to determine which of the mediated transport pathways is susceptible to self-inhibition by studying the dependence of the steady state Cl- flux on the extracellular Cl- concentration and how DIDS, an inhibitor of Cl- self-exchange, and H + affect this relationship. Addition of DIDS to Ehrlich cells results in inhibition of Cl- transport at every Cl- concentration tested (40-150 mM). Moreover, the Cl- flux/Cl- concentration relationship no longer exhibits self-inhibition, suggesting that this phenomenon is a characteristic of the Cl- self-exchanger rather than of the Cl- -dependent cation cotransport system. Lowering the extracellular pH (pHo) from 7.35 to 5.30 stimulates Cl- transport by a process that saturates with respect to [H +]. Half-maximal stimulation occurs at pHo 6.34. A comparison of the kinetic parameters, Ks and Jmax, calculated from the ascending limb of the Cl- flux/Cl- concentration curve at pHo 7.30 to those at pHo 5.50 show that the values for Ks are almost identical (23.6 mM and 21.3 mM, respectively), while the values for Jmax [22.2 mEq/Kg dry wt) X min] differ by only 15%. This finding along with the observation that DIDS completely blocks H + stimulation of Cl- transport is compatible with the suggestion that H + interact at the modifer site of the Cl- self-exchanger and thereby prevents self-inhibition. 相似文献
20.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl– channels, i.e., via a depolarization of the cell membrane. 相似文献