首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary An efficient and reliable method for shoot regeneration from leaf disks of Fragaria vesca L. has been developed. This protocol has been successfully employed to obtain transformed plants using Agrobacterium tumefaciens as gene vector. Murashige and Skoog basal medium supplemented with benzyladenine (4 mg/l) and indole-3-butyric acid (0.25 mg/l) induced the maximum percentage of shoot regeneration (98%) and the highest number of shoot colonies per explant (4.6) after 8 weeks of culture. Isolated shoots would elongate and proliferate when the benzyladenine concentration was lowered to 0.5 mg/l. The established protocol for shoot regeneration was employed to transform leaf disks using Agrobacterium tumefaciens carrying the plasmid pBI121. A 7.7% of the inoculated explants showed kanamycin resistance after 10 weeks of selection in a medium containing 25 mg/l of this antibiotic. The transgenic shoots obtained were rooted in the presence of 25 mg/ kanamycin and successfully acclimatized. The final percentage of transformation obtained based on beta-glucuronidase expression was 6.9%.Abbreviations BA benzyladenine - IBA indole-3-butyric acid - MS Murashige and Skoog basal medium - LSD least significant difference - NOS nopaline synthase promoter - NPTII neomycin phosphotransferase (EC 2.7.1.95) - CaMV35S cauliflower mosaic virus promoter - GUS beta-glucuronidase (EC 3.2.1.31) - LB Luria Broth base - CTAB hexadecil trimethyl ammonium bromide - PCR polymerase chain reaction - X-gluc 5-bromo-4-chloro-3-indolyl-glucuronide  相似文献   

2.
3.
Cowpeas are nutritious grains that provide the main source of protein, highly digestible energy and vitamins to some of the world's poorest people. The demand for cowpeas is high but yields remain critically low, largely because of insect pests. Cowpea germplasm contains little or no resistance to major insect pests and a gene technology approach to adding insect protection traits is now a high priority. We have adapted features of several legume and other transformation systems and reproducibly obtained transgenic cowpeas that obey Mendelian rules in transmitting the transgene to their progeny. Critical parameters in this transformation system include the choice of cotyledonary nodes from developing or mature seeds as explants and a tissue culture medium devoid of auxins in the early stages, but including the cytokinin BAP at low levels during shoot initiation and elongation. Addition of thiol-compounds during infection and co-culture with Agrobacterium and the choice of the bar gene for selection with phosphinothricin were also important. Transgenic cowpeas that transmit the transgenes to their progeny can be recovered at a rate of one fertile plant per thousand explants. These results pave the way for the introduction of new traits into cowpea and the first genes to be trialled will include those with potential to protect against insect pests.  相似文献   

4.
The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.  相似文献   

5.
Fragaria vesca L., a diploid (2n=2x=14) relative of the commercial octoploid strawberry, is an attractive model for functional genomics research in Rosaceae. Its small genome size, short reproductive cycle, and facile vegetative and seed propagation make F. vesca a promising candidate for forward and reverse genetics experiments. However, the lack of a high-efficiency transformation protocol required for systematic production of thousands of T-DNA insertional mutant lines and high-throughput gene validation is a major bottleneck. We describe a new transformation procedure that uses leaf explants from newly unfolded trifoliate leaves obtained from stock plants 6–7 weeks after seed germination, co-cultivation with Agrobacterium strain GV3101, and stringent selection on MS medium containing 4 mg l−1 hygromycin. Using this protocol we achieved 100% transformation efficiency for 6 of 14 F. vesca accessions tested. Accession PI 551572 was determined to be the best candidate for a model in F. vesca functional genomics research, as it showed the greatest propensity for callus formation, transformation, shoot regeneration, ex vitro establishment, and plant growth, requiring only 14–15 weeks to complete its life cycle in different seasons in the greenhouse.  相似文献   

6.
Shoot organogenesis and plant regeneration were readily achieved from cotyledonary petioles and hypocotyls of Brassica carinata. These explants were used for Agrobacterium-mediated transformation. A construct containing the selectable marker genes, neomycin phosphotransferase II, phosphinothricin acetyl transferase and the reporter gene β-glucuronidase, under the control of a tandem 35S promoter, was used for transformation. Although transformation was achieved with both cotyledonary petioles and hypocotyls, cotyledonary petioles responded best, with 30–50% of the explants producing GUS-positive shoots after selection on 25 mg/l kanamycin. Direct selection on L-phosphinothricin also produced resistant shoots but at a lower frequency (1–2%). Received: 9 April 1997 / Revision received: 3 July 1997 / Accepted: 30 July 1997  相似文献   

7.
We report Agrobacterium tumefaciens-mediated transformation of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the hypocotyl slice technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supplemented Murashige and Skoog (MS) media reached 11% for 'Angeleno' and 19% for 'Larry Anne' hypocotyl slices. Transformation using Agrobacterium tumefaciens GV3101 harboring a plasmid with the neomycin phosphotransferase II (nptII) and the green fluorescent protein (gfp) genes produced ten independent lines, six from 'Angeleno' and four from 'Larry Anne', representing transformation efficiencies of 0.8 and 0.3%, respectively, relative to the initial number of hypocotyl slices. Plants of six lines were found to produce the transgene encoded mRNAs. DNA blotting demonstrated the presence of transgene sequences in trees from five lines after 18 months of growth in the greenhouse.  相似文献   

8.
A method for genetic transformation of Saintpaulia ionantha by co-cultivation of in vitro-grown leaves and petioles with Agrobacterium tumefaciens is described. Two bacterial strains, EHA105 and A281 both harbouring the binary plasmid pKIWI105 carrying the genes uidA and nptII, were used in the experiments. Regenerants were not obtained using the disarmed strain EHA105. The oncogenic strain A281 resulted in efficient transient and stable expression of the transferred traits for petiole explants only. After transformation and regeneration, the integration of the transgenes in the plant genome was confirmed by PCR analysis and Southern hybridization.  相似文献   

9.
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.  相似文献   

10.
11.
Various aspects of transformation and regeneration processes were examined in efforts to improve the efficiency of production of transgenic cotton (Gossypium hirsutum L.). Green fluorescent protein (GFP) proved to be a valuable tool in elucidating the timing and localization of transient gene expression and in visualizing conversion of transient events to stable transformation events. By day 4 after infection, there was maximal transient activity in the cells at the cut edge of Agrobacterium-infected cotyledon disks. We were able to visualize conversion of some of these events to stable transformation by day 8. The effects of Agrobacterium strains, acetosyringone, and temperature on stable transformation were also evaluated. Strain LBA4404 proved to be significantly better than EHA105. Acetosyringone increased significantly the stable transformation efficiency in cotton. Cocultivation at 21°C, compared to 25°C, consistently resulted in higher transformation frequencies. GFP expression in stably transformed callus was useful in studying the efficiency of selection during early stages of culture. We found that the survival of individual callus lines on selection medium was influenced by their original size and initial transgene expression status. Larger-size calluses and calluses expressing the transgene (GFP) had a higher rate of survival. Survival could be improved by an additional two-week culture on medium high in cytokinin and low in auxin before transfer to a medium to induce embryogenesis. However, this treatment delayed embryogenesis. Various other important aspects of the regeneration process are described and an overall scheme for producing transgenic cotton is presented.  相似文献   

12.
研究了不同海拔高度(1800和3900m)的匍匐茎克隆植物野草莓(Fragaria vesca)种群对光照和养分资源斑块性分布生境的响应。结果表明:与资源的空间同质性处理(Ⅰ)和(Ⅱ)相比,资源的空间异质性处理(Ⅲ)和(Ⅳ)中2个种群的野草莓的近端、远端分株部分和整个克隆片段的生物量和分株数均明显增加。当近端分株部分经历低光高养,而与其相连的远端分株部分经历高光低养时,相比于整个克隆片段都处于低光高养的同质性生境,来自2个海拔的种群的近端分株部分都会增加对根的生物量分配;当近端分株部分经历高光低养,而与其相连的远端分株部分经历低光高养时,相比于整个克隆片段都处于低光高养的同质性生境,来自2个海拔的种群的近端分株部分都会减少对根的生物量分配,远端分株部分也被观察到类似的生物量分配格局。相比于高光低养的同质性生境,当与低光高养的远端分株部分相连时,经历高光低养的近端分株部分有更大的叶面积;相比于低光高养的同质性生境,当与低光高养近端分株部分相连时,经历高光低养的远端分株部分有更大的叶面积。结果表明,野草莓在资源交互斑块性生境中发生了克隆内分工,克隆内分工有利于克隆植物对异质性资源的利用,对克隆植物在资源斑块性分布生境中的生存和生长具有重要的意义。  相似文献   

13.
Sonication-assisted Agrobacterium-mediated transformation (SAAT) tremendously improves the efficiency of Agrobacterium infection by introducing large numbers of microwounds into the target plant tissue. Using immature cotyledons of soybean as explants, we evaluated the effects of the following parameters on transient β-glucuronidase (GUS) activity: cultivars, binary vectors, optical density of Agrobacterium during infection, duration of sonication treatment, co-culture conditions, length of explant preculture and addition of acetosyringone during co-culture. The extent of tissue disruption caused by sonication was also determined. The highest GUS expression was obtained when immature cotyledons were sonicated for 2 s in the presence of Agrobacterium (0.11 OD600nm) followed by co-cultivation with the abaxial side of the explant in contact with the culture medium for 3 days at 27°C. The addition of acetosyringone to the co-culture medium enhanced transient expression. No differences were observed when different cultivars or binary vectors were used. Cotyledons sonicated for 2 s had moderate tissue disruption, while the longer treatments resulted in more extensive damage. Received: 1 October 1997 / Revision received: 18 February 1998 / Accepted: 13 March 1998  相似文献   

14.
Hypocotyl segments from the seeds of Japanese persimmon (Diospyros kaki Thunb) were cultured on a modified Murashige and Skoog medium supplemented with N-(2-chloro-4-pyridyl)-N′-phenylurea, zeatin or 6-benzylaminopurine. The highest frequency of shoot regeneration was observed when the segments were cultured on medium containing 2 mg/l of zeatin. This culture system was adapted to Agrobacterium-mediated transformation. The hypocotyl segments were inoculated with Agrobacterium tumefaciens strains harboring binary vectors, which contained the neomycin phosphotransferase II gene and the β-glucuronidase gene. Regenerated shoots were selected on a medium containing kanamycin. Histochemical GUS assay showed that the shoots regenerated from the segments inoculated with EHA101/pSMAK251 expressed the gus gene. The presence and integration of the gus gene was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. The regeneration frequency of transformed shoot was 11.1%. The transgenic shoots were rooted and developed into whole plants within 4–5 months. Received: 18 August 1997 / Revision received: 8 October 1997 / Accepted: 11 November 1997  相似文献   

15.
TDZ, auxin and genotype effects on leaf organogenesis in Fragaria   总被引:5,自引:0,他引:5  
The different types of organogenic (roots and adventitious shoots) and callus formation responses of leaves from 30-day-old proliferating shoots of different Fragaria spp. genotypes were studied in response to MS medium supplemented with 4.54 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron; TDZ) alone and in combination with 0.98 μM indole-3-butyric acid (IBA), 0.84 μM3-benzo[b]selenienyl acetic acid (BSAA) or 0.90 μM2,4-dichlorophenoxy acetic acid (2,4-D). The study included: nine octoploid Fragaria x ananassa cultivars and breeding selections; two octoploid breeding selections from F. virginiana glauca inter-species crosses; two diploid F. vesca cultivars; and one diploid clone of F. nubicola Lindl. TDZ plus IBA promoted the highest shoot regeneration efficiencies from leaves of nearly all of the genotypes, while the TDZ/BSAA and TDZ/2,4-D combinations promoted high regeneration efficiencies for only some of the genotypes (Alpina W.O., Sveva, AN 91.371.53, Onda, Paros and FO93.143.5). For the more efficient regenerating genotypes, IBA induced the highest frequency of regenerating leaves, while BSAA induced the highest number of regenerated shoots from leaves and more callus production for most of the genotypes.  相似文献   

16.
Summary White clover (Trifolium repens L.) plants from the cultivars Grasslands Huia and Grasslands Tahora have been transformed using Agrobacterium-mediated T-DNA transfer. Transgenic plants regenerated directly from cells of the cotyledonary axil. To transform white clover, shoot tips from 3 day old seedlings were co-cultivated with A. tumefaciens strain LBA4404 carrying the plasmid vector pPE64. This vector contains the neomycin phosphotransferase II gene (nptII) and -glucuronidase reporter gene (gus) both under the control of the CaMV 35S promoter. Kanamycin-resistant plants regenerated within 42 days after transfer onto selective media. Integration of the nptII and gus genes into the white clover genome was confirmed using Southern blotting, and histochemical analysis indicated that the gus gene was expressed in a variety of tissues. In reciprocal crosses between a primary transformant and a non-transformed plant the introduced gus gene segregated as a single dominant Mendelian trait.Abbreviations BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MS Murashige and Skoog - GUS -glucuronidase - X-GLUc 5-bromo-4-chloro-3-indolyl--D-glucuronide - MUG methylumbelliferyl--D-glucuronide - CaMV Cauliflower Mosaic Virus - NPTII neomycin phosphotransferase II - OCS octopine synthase - 4-MU 4-methyl umbelliferone  相似文献   

17.
Plant calcium-dependent protein kinases (CDPKs) play vital roles in calcium signal transduction during various developmental processes and during responses to biotic and abiotic stresses. Here, we isolated and characterized a CDPK gene designated FvCDPK1 from a wild diploid strawberry accession Heilongjiang-3 (Fragaria vesca L.). The FvCDPK1 gene contains 12 exons and 11 introns, and the sequences of most exons are highly conserved in higher plants. The full-length cDNA of FvCDPK1 contains 1,825 nucleotides with an open reading frame of 1,653 bp encoding a polypeptide of 550 amino acids. The deduced FvCDPK1 protein contains the basic features of typical plant CDPKs: a catalytic kinase domain and a regulatory calmodulin-like domain containing four EF-hand calcium-binding motifs. Phylogenetic analysis confirmed that FvCDPK1 belongs to the plant CDPK family. When transiently expressed in onion epidermal cells, the FvCDPK1-GFP fusion protein was found to be localized in the nucleus. Expression analysis indicated that FvCDPK1 was expressed in fruits at different developmental and ripening stages, as well as in several tissues such as roots, runners, flowers, leaves, and meristems. Moreover, expression levels of FvCDPK1 were higher in meristems than in other vegetative tissues. Under abiotic stress conditions, however, FvCDPK1 was found to be upregulated upon abscisic acid, NaCl, cold-, or high-temperature treatments. Taken together, our data suggest that FvCDPK1 might play a role in various responses to abiotic stresses in strawberry.  相似文献   

18.
In recent years,Brassica species have acquired an important position in the oilseed industry. Even thoughBrassica transformation protocols are well established,there is still a need for the development of new transformation protocols for elite AustralianB. juncea lines,because regeneration inB. juncea is highly genotype-dependent and in addition, their hypocotyl explants are susceptible to necrosis.Agrobacterium-mediated transformation protocol to overcome necrosis in elite AustralianB. juncea lines is described here. To overcome necrosis, we have adopted 2 strategies: extension of precultivation time of hypocotyl explants, and use of a 2-stage hygromycin selection process.The frequency of recovery of transformants from AustralianB. juncea andBrassica napus lines was 1.7% and 0.9%, respectively. Polymerase chain reaction tests confirmed that allBrassica plants that survived through stringent screening procedures were positive for the inserted hygromycin resistance gene,hph. Progeny from 6Brassica lines tested segregated for thehph gene, and χ2 analysis suggested a 3:1 segregation ratio.This is in line with a tDNA integration into a single locus, which is an important feature of a transformation protocol for subsequent breeding purposes. Although the scientific content of this article has been reviewed,the full-text Web publication has not been edited in detail.  相似文献   

19.
Tomato (Solanum lycopersicum L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols. Plant regeneration and Agrobacterium-mediated genetic transformation system from different explants in various genotypes of tomato are necessary for genetic improvement. Among diverse plant growth regulator (PGR) combinations and concentrations tested, Zeatin (ZEA) at 2.0 mg l?1 in combination with 0.1 mg l?1 indole-3-acetic acid (IAA) generated the most shoots/explant from the cotyledon of Arka Vikas (36.48 shoots/explant) and PED (24.68 shoots/explant), respectively. The hypocotyl explant produced 28.76 shoots/explant in Arka Vikas and 19.44 shoots/explant in PED. In contrast, leaf explant induced 23.54 shoots/explant in Arka Vikas and 17.64 shoots/explant in PED. The obtained multiple shoot buds from three explant types were elongated on a medium fortified with Gibberellic acid (GA3) (1.0 mg l?1), IAA (0.5 mg l?1), and ZEA (0.5 mg l?1) in both the cultivars. The rooting was observed on a medium amended with 0.5 mg l?1 indole 3-butyric acid (IBA). The transformation efficiency was significantly improved by optimizing the pre-culture of explants, co-cultivation duration, bacterial density and infection time, and acetosyringone concentration. The presence of transgenes in the plant genome was validated using different methods like histochemical GUS assay, Polymerase Chain Reaction (PCR), and Southern blotting. The transformation efficiency was 42.8% in PED and 64.6% in Arka Vikas. A highly repeatable plant regeneration protocol was established by manipulating various plant growth regulators (PGRs) in two tomato cultivars (Arka Vikas and PED). The Agrobacterium-mediated transformation method was optimized using different explants like cotyledon, hypocotyl, and leaf of two tomato genotypes. The present study could be favourable to transferring desirable traits and precise genome editing techniques to develop superior tomato genotypes.  相似文献   

20.
The amounts of flavonoid (myricetin , quercetin and kaempferol), antioxidant contents ( total phenolic and total flavonoid) and antioxidant activities (DPPH and FRAP) were analyzed in strawberry. Quantitative analysis of conjugated flavonoid contents were obtained after different hydrolysis concentration and reaction period . The highest yields of myricetin and quercetin were found with 1.0M HCl and a reaction period of 0.5 hr, however , for kaempferol was 1.0M HCl and a reaction period of 1hr , respectively. In the study, we also estimated the correlation coefficient of TPC, TFC, DPPH and FRAP. In addition , a positive correlation was observed ( r = 0.980, P < 0.05) between TPC and TFC, TPC and TFC are correlated to the DPPH activity (r = 0.913, P < 0.05 and r = 0.899 , P < 0.05 , respectively) , and to the FRAP activity ( r = 0.958, P < 0.05 and r = 0.936, P < 0.05, respectively), respectively. These results pointed out that strawberry generally possesses a high level of antioxidant activities, which could be linked to the levels of phenolic compounds in the fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号