首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Size variations in the anterior dentition were analyzed for 26 species of strepsirhine primates. The upper and lower incisor rows of strepsirhines, like those of anthropoid primates, scale isometrically with body size. Within the order Primates, strepsirhines exhibit the smallest incisors relative to body size, followed in increasing size by tarsiers, platyrrhines, and catarrhines. If the lateral teeth of the indriid toothcomb are interpreted as incisors and not canines, correlations between mandibular tooth size variables and body weight are maximized. The upper incisors of strepsirhines are extremely small and frequently widely separated, most likely to minimize occlusion with the toothcomb. Species deviations for assorted size variables of the anterior dentition generally fail to reflect functional variations in the use of the anterior teeth; some of the variables, however, do reflect taxonomic differences within the Strepsirhini. Although toothcomb size variations among extant strepsirhines are more readily interpreted in terms of gum feeding and bark scraping than they are in terms of grooming, anterior dental morphology as a whole is more easily explained by a grooming hypothesis when existing models of toothcomb origins are considered.  相似文献   

2.
Contrary to some recent assertions, there are no persuasive ways for determining the homologies of indriid toothcomb teeth and the resulting dental formulas. Most of the presumably distinctive features of procumbent “canines” are also seen in incisors, and vice versa. Thus, there are at least three plausible dental formulas for indriid deciduous teeth and two for the permanent dentition. All formulas are compatible with the distribution of teeth in fossil strepsirhines. Similar arguments apply to strepsirhine toothcombs as a whole, but the absence of three-incisored ancestors in the fossil record strongly supports the conclusion that the dental formula of nonindriids is 2.1.3.3. for the lower dentition. There are also alternative interpretations of the original function of the toothcomb. Recent arguments which purport to demonstrate that the toothcomb evolved originally as a sap-feeding adaptation fail that purpose. The ontogeny of infant lemur behavior suggests that the original function involved grooming rather than feeding if the data are interpreted in a Haeckelian context.  相似文献   

3.
The hypothesis that the vomeronasal organ has an important functional relationship with, and led to the evolution of, the prosimian toothcomb has not been well tested. This paper examines the diversity of anatomical strepsirrhinism across several mammalian taxa to determine if fossil and living strepsirrhine primates exhibit any derived characters that may highlight the functional link between the vomeronasal organ and the toothcomb, and to examine the potential importance of anatomical strepsirrhinism to toothcomb origins. Results indicate that extant gregarious lemuriforms are derived in having a relatively wide interincisal gap, providing an unobstructed line of communication between the vomeronasal organ and anterior rostral structures such as the toothcomb. This finding is consistent with the proposal that anatomical strepsirrhinism is functionally related to use of the toothcomb in grooming. However, the importance of the vomeronasal organ to toothcomb origins is less clear. If the morphology of adapiforms and non-gregarious lemuriforms is representative of the morphology of basal lemuriforms, then it can be inferred that early lemuriforms did not possess the wide-gap autapomorphy; hence, anatomical evidence discussed here cannot be used to rule out non-social hypotheses of toothcomb origins. Am J Phys Anthropol 105:355–367, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Although strepsirhine primates can be described by their narial configuration, this and most other definable features are probably primitive retentions; only the development of a grooming claw of the second pedal digit and of a toothcomb (the latter of which has been lost in Daubentonia) emerge as potential apomorphies of the group. Within this assemblage lemurids, Lepilemur, the indriids, and Daubentonia can be argued to constitute a monophyletic group whose relationships cladistically are in the sequence listed; Lemuridae and Indriidae can themselves be delineated as monophyletic groups. The remaining strepsirhine primates—the cheirogaleids, galagids, and lorisids—also appear to constitute a definable clade, with the former group representing the sister taxon of the latter two families; cach family can be united on the basis of distinct synapomorphies. Although there are features—especially of the ear region—which present themselves as potentially reflective of the sister relationship of Tarsius + Anthropoidea, other characters, including the possession of the grooming claw, are suggestive of an alternative scheme: Tarsius may be the sister of the extant lorisiform group, thereby reconstituting, albeit in a novel form, the primate suborder Prosimii. It also appears that fossil “tarsioids” may in fact be more closely related to the extant lorisiforms than to Tarsius. A reconsideration of the so-called fossil lemurs, the adapids, leads to the conclusion that Adapis-like primates are a clade apart from Pelycodus, Notharctus, Smilodectes and their most immediate relatives, and may themselves constitute a clade that is related as the primitive sister to all other “prosimians” by virtue of the development of the so-called free intrabullar tympanic ring.  相似文献   

5.
Fossils relevant to lemuriform origins are reviewed. Omanodon seems very close to the other early tooth-combed lemuriforms Karanisia, Wadilemur and Saharagalago, whereas Bugtilemur is rejected from the Lemuriformes. The Djebelemurinae, including Djebelemur and 'Anchomomys' milleri, are considered as stem lemuriforms preceding tooth comb differentiation; they are shown to be very distinct from European adapiforms. With tooth-combed lemuriforms present in Africa around 40 million years ago, and stem lemuriforms without tooth combs present on the same continent around 50-48 million years ago, a reasonable scenario can be proposed: tooth comb differentiation and lemuriform dispersal to Madagascar between 52-40 million years ago. The possible significance of Plesiopithecus for daubentoniid origins is raised. A critique of molecular dates is presented in the light of the fossil record. Azibiids are possibly early African prosimians. The timing of the dispersal of primates to Africa and the problem of strepsirhine origins are briefly examined.  相似文献   

6.
The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel‐tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel‐tooth‐digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel‐tooth‐digging rodents differ in craniodental morphology. The study showed that the crania of chisel‐tooth‐digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel‐tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel‐tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species’ evolutionary history and functional morphology.  相似文献   

7.
The three species of vampire bats (Phyllostomidae: Desmodontinae), Desmodus rotundus, Diaemus youngi, and Diphylla ecaudata, are the only mammals that obtain all nutrition from vertebrate blood (sanguinivory). Because of the unique challenges of this dietary niche, vampire bats possess a suite of behavioral, physiological, and morphological specializations. Morphological specializations include a dentition characterized by small, bladelike, non‐occlusive cheek teeth, large canines, and extremely large, procumbent, sickle‐shaped upper central incisors. The tips of these incisors rest in cuplike pits in the mandible behind the lower incisors (mandibular pits). Here, we use microCT scanning and high‐resolution radiography to describe the morphology of the mandible and anterior dentition in vampire bats, focusing on the relationship between symphyseal fusion, mandibular pit size, incisor size, and procumbency. In Desmodus and Diaemus, highly procumbent upper incisors are associated with relatively small mandibular pits, an unfused mandibular symphysis with substantial bony interdigitations linking the dentaries, and a diastema between the lower central incisors that helps to facilitate the lapping of blood from a wound. In Diphylla, less procumbent upper incisors are associated with relatively large mandibular pits, a completely fused mandibular symphysis, and a continuous lower toothrow lacking a central diastema. We hypothesize that symphyseal morphology and the presence or absence of the diastema are associated with the angle of upper incisor procumbency and mandibular pit development, and that spatial constraints influence the morphology of the symphysis. Finally, this morphological variation suggests that Diphylla utilizes a different feeding strategy as compared to Desmodus and Diaemus, possibly resulting from the functional demands of specialization on avian, rather than mammalian, blood. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
In a recent paper Schwartz ('74) proposes revised homologies of the deciduous and permanent teeth in living lemuriform primates of the family Indriidae. However, new evidence provided by the deciduous dentition ofAvahi suggests that the traditional interpretations are correct, specifically: (1) the lateral teeth in the dental scraper of Indriidae are homologous with the incisors of Lemuridae and Lorisidae, not the canines; (2) the dental formula for the lower deciduous teeth of indriids is 2.1.3; (3) the dental formula for the lower permanent teeth of indriids is 2.0.2.3; and (4) decrease in number of incisors during primate evolution was usually in the sequence I3, then I2, then I1. It appears that dental reduction during primate evolution occurred at the ends of integrated incisor and cheek tooth units to minimize disruption of their functional integrity.  相似文献   

9.
We describe a new species of the rare and enigmatic cricetid genus Karydomys from the middle Miocene Ville Formation of the Hambach lignite mine in north-west Germany. The locality Hambach 6C has yielded the first substantial records of Karydomys from central Europe. For the first time, all molar positions are well-documented, including the previously unknown m2. The excellent molar material allows us to distinguish Karydomys wigharti sp. nov. from the western European species K. zapfei. Karydomys wigharti predominantly occurs at localities that are correlated with the upper part of the Mammalian Neogene biozone MN 5. The new finds are of palaeobiogeographic significance for the genus Karydomys , since Hambach 6C represents the north-westernmost outpost of terrestrial Miocene faunas in Europe. In addition, the locality has yielded the first lower jaws and incisors of the genus. Both the jaw morphology, and the ornamentation and microstructure of the incisor enamel offer new arguments for a systematic classification of Karydomys into the subfamily Democricetodontinae. We assume that the scarcity of the two large European Karydomys species can be explained by their special adaptation to wet habitats, which are poorly documented in the fossil record.  相似文献   

10.
There are two main (but not mutually exclusive) methods by which subterranean rodents construct burrows: chisel-tooth digging, where large incisors are used to dig through soil; and scratch digging, where forelimbs and claws are used to dig instead of incisors. A previous study by the authors showed that upper incisors of chisel-tooth diggers were better adapted to dig but the overall cranial morphology within the rodent sample was not significantly different. This study analyzed the lower incisors and mandibles of the specimens used in the previous study to show the impact of chisel-tooth digging on the rodent mandible. We compared lower incisors and mandibular shape of chisel-tooth digging rodents with nonchisel-tooth digging rodents to see if there were morphological differences between the two groups. The shape of incisors was quantified using incisor radius of curvature and second moment of area (SMA). Mandibular shape was quantified using landmark based geometric morphometrics. We found that lower incisor shape was strongly influenced by digging group using a Generalized Phylogenetic ancova (analysis of covariance). A phylogenetic Procrustes anova (analysis of variance) showed that mandibular shape of chisel-tooth digging rodents was also significantly different from nonchisel-tooth digging rodents. The phylogenetic signal of incisor radius of curvature was weak, whereas that of incisor SMA and mandibular shape was significant. This is despite the analyses revealing significant differences in the shape of both mandibles and incisors between digging groups. In conclusion, we showed that although the mandible and incisor of rodents are influenced by function, there is also a degree of phylogenetic affinity that shapes the rodent mandibular apparatus.  相似文献   

11.
Recent fossil discoveries have demonstrated that Africa and Asia were epicentres for the origin and/or early diversification of the major living primate lineages, including both anthropoids (monkeys, apes and humans) and crown strepsirhine primates (lemurs, lorises and galagos). Competing hypotheses favouring either an African or Asian origin for anthropoids rank among the most hotly contested issues in paleoprimatology. The Afrocentric model for anthropoid origins rests heavily on the >45 Myr old fossil Algeripithecus minutus from Algeria, which is widely acknowledged to be one of the oldest known anthropoids. However, the phylogenetic position of Algeripithecus with respect to other primates has been tenuous because of the highly fragmentary fossils that have documented this primate until now. Recently recovered and more nearly complete fossils of Algeripithecus and contemporaneous relatives reveal that they are not anthropoids. New data support the idea that Algeripithecus and its sister genus Azibius are the earliest offshoots of an Afro–Arabian strepsirhine clade that embraces extant toothcombed primates and their fossil relatives. Azibius exhibits anatomical evidence for nocturnality. Algeripithecus has a long, thin and forwardly inclined lower canine alveolus, a feature that is entirely compatible with the long and procumbent lower canine included in the toothcomb of crown strepsirhines. These results strengthen an ancient African origin for crown strepsirhines and, in turn, strongly challenge the role of Africa as the ancestral homeland for anthropoids.  相似文献   

12.
A review of the literature reveals a long history of disagreement on the interpretation of the lower deciduous and permanent dentition of the Indriidae. This disagreement has centered on the existence and/or replacement of a canine as a member of the indriid toothcomb. The presence of a pair of canines in the toothcomb of lemurids and lorisids has rarely been questioned, and there is no evidence to indicate that this interpretation is incorrect. There has, however, been no consistency nor substantiating evidence presented for any interpretation of the indriid toothcomb. By comparing the morphology of the teeth of the lemurid, lorisid, and indriid toothcomb, both deciduous and permanent, comparing the mode of dental development in these three families, identifying the indriid lower deciduous dentition, and by relating the data to an ontogenetic and phylogenetic framework, this study proposes: (1) in all three families, the lateral teeth of the toothcomb are canines, (2) the dental formula for the lower deciduous teeth of indriids is 1.1.4, (3) the dental formula for the lower permanent teeth of indriids is 1.1.2.3, and (4) that decrease in number of incisors during primate evolution was most likely I1 to I2 to I3.  相似文献   

13.
The X-linked tabby (Ta) syndrome in the mouse is homologous to the hypohidrotic ectodermal dysplasia (HED) in humans. As in humans with HED, Ta mice exhibit hypohidrosis, characteristic defects of hairs and tooth abnormalities. To analyze the effects of Ta mutation on lower incisor development, histology, morphometry and computer-aided 3D reconstructions were combined. We observed that Ta mutation had major consequences for incisor development leading to abnormal tooth size and shape, change in the balance between prospective crown- and root-analog tissues and retarded cytodifferentiations. The decrease in size of Ta incisor was observed at ED13.5 and mainly involved the width of the tooth bud. At ED14.5-15.5, the incisor appeared shorter and narrower in the Ta than in the wild type (WT). Growth alterations affected the diameter to a greater extent than the length of the Ta incisor. From ED14.5, changes in the shape interfered with the medio-lateral asymmetry and alterations in the posterior growth of the cervical loop led to a loss of the labio-lingual asymmetry until ED17.0. Although the enamel organ in Ta incisors was smaller than in the WT, a larger proportion of the dental papilla was covered by preameloblasts-ameloblasts. These changes apparently resulted from reduced development of the lingual part of the enamel organ and might be correlated with a possible heterogeneity in the development of the enamel organ, as demonstrated for upper incisors. Our observations suggest independent development of the labial and lingual parts of the cervical loop. Furthermore, it appeared that the consequences of Ta mutation could not be interpreted only as a delay in tooth development.  相似文献   

14.
Despite the relatively large size of anthropoid incisors in relation to the remainder of the dental arcade, and their prominent role in the preprocessing of food prior to ingestion, comparatively little is known about the functional morphology of anthropoid incisor shape and crown curvature. The relationship between incisor allometry and diet is well documented for both platyrrhines and catarrhines; however, similar relationships between incisor shape and crown curvature have to date only been reported for living and fossil members of the superfamily Hominoidea. Given the limited taxonomic diversity among the extant members of that group, it is difficult to firmly establish the relative influence of phylogeny and dietary function in the governance of incisor crown curvature. Unlike hominoids, which are represented by only five living genera, extant platyrrhines are a more varied group that includes 16 ecologically diverse genera. In an effort to clarify the functional relationship between maxillary and mandibular incisor crown curvature and diet, this study uses high resolution polynomial curve fitting to quantify mesiodistal and cervicoincisal curvature for a taxonomically diverse platyrrhine sample (n = 133 individuals representing 18 taxa) with well documented dietary behavior. Results were consistent with prior analyses of hominoid incisor curvature and identify a significant and positive correlation between incisor crown curvature and diet such that increasing curvature is associated with a proportionate increase in frugivory. These results are independent confirmation of the results reported from a previous analysis of hominoid incisor curvature and provide new evidence to suggest that diet is the primary governing factor influencing anthropoid incisor curvature.  相似文献   

15.
胡荣  赵凌霞 《人类学学报》2012,31(4):371-380
釉面横纹的分布与数目可以反映牙齿生长发育的时间和速率变化, 在化石研究中能为复原个体生活史提供重要依据。本研究运用扫描电子显微镜观察华南化石猩猩门齿、犬齿釉面横纹分布与数目, 并估算门齿和犬齿牙冠形成时间, 结果如下: 牙冠从牙尖至牙颈方向釉面横纹分布密度有疏密变化, 牙尖釉面横纹密度小于10条/mm, 中间至牙颈釉面横纹密度较尖部增大, 大约10-15条/mm; 犬齿釉面横纹数目多于门齿, 雄性犬齿釉面横纹数目多于雌性; 根据釉面横纹计数及其生长周期的组织切片观察结果, 估算门齿牙冠形成时间大约为2.97-6.66年, 犬齿雄性长于雌性, 分别为6.25-11.31年和4.28-7.29年。与一些古猿、早期人类、现代人以及现生大猿比较, 华南化石猩猩釉面横纹整体密度稍大于南方古猿和傍人, 小于黑猩猩、大猩猩、现代人和禄丰古猿; 除侧门齿外, 华南化石猩猩釉面横纹数目明显多于南方古猿、傍人和现代人, 与大猩猩接近; 华南猩猩前部牙齿牙冠形成时间与现生大猿、禄丰古猿差别不大, 与现生猩猩最相近, 长于南方古猿和傍人。  相似文献   

16.
Allometric relationships between incisor size and body size were determined for 26 species of New World primates. While previous studies have suggested that the incisors of Old World primates, and anthropoids in general, scale isometrically with body size, the data presented here indicate a negative allometric relationship between incisor size and body size among New World species. This negative allometry was exhibited by platyrrhines when either upper or lower incisor row length was regressed against body weight, and when either least-squares or bivariate principal axis equations were used. When upper incisor length was plotted against skull length, negative allometry could be sustained using both statistical techniques only when the full sample of 26 species was plotted. The choice of variables to represent incisor size and body size, and the choice of a statistical technique to effect the allometric equation, had a more pronounced impact on the location of individual species with regard to lines of best fit. Platyrrhines as a group have smaller incisors relative to body size than do catarrhines, regardless of diet. Among New World primates, small incisors represent a plausible primitive condition; species with relatively large incisors manifest a phyletic change associated with a dietary shift to foods that require increased incisal preparation. The opposite trend characterizes Old World primates. In spite of the taxonomic differences in relative incisor size between platyrrhine and catarrhine primates, inferences about diet derived from an allometric equation for all anthropoids should prove reliable as long as the species with unknown diet does not lie at the upper end of the body size range for platyrrhines or catarrhines.  相似文献   

17.
Dentition development and budding morphogenesis   总被引:4,自引:0,他引:4  
The development of functional teeth in the mouse has been widely used as a model to study general mechanisms of organogenesis. Compared with other mammals, in which three incisors, one canine, four premolars, and three molars may occur even in each dental quadrant, the mouse functional dentition is strongly reduced. It comprises only one incisor separated from three molars by a toothless gap diastema at the location of the missing teeth. However, mouse embryos also develop transient vestigial dental primordia between the incisor and molar germs in both the upper and lower jaws. These rudimental structures regress, and epithelial apoptosis is involved in this process. The existence of the vestigial dental structures allowed a better assessment of the periodicity in the mouse dentition, which extends opportunities for the interpretation of molecular data on tooth development. We compared the dentition development with tentative models of budding morphogenesis in other epithelial appendages lungs and feathers. We suggested how developmental control by signaling molecules, including bone morphogenetic protein (Bmp), sonic hedgehog (Shh), and fibroblast growth factor (Fgf), can be similarly involved during budding morphogenesis of dentition and other epithelial appendages. We propose that epithelial apoptosis plays an important role in achieving specific features of dentition, whose development involves both budding and its more complex variant branching. The failure of segregation of the originating buds supports the participation of the concrescence of several tooth primordia in the evolutionary differentiation of mammalian teeth.  相似文献   

18.
The epithelial tissue forming the posterior aspect of the apical foramen in the upper incisor of the rat was reconstructed from 1 mum thick serial cross sections. Like the lower incisor, this portion of the odontogenic organ in the upper incisor was composed of a bulbous and a "U"-shaped part. However, the bulbous part was considerably blunter and the "U"-shaped part much larger in circumference in comparison to the lower incisor. Although no differences were found between the upper and lower incisor regarding the contents and the basic organization of cells within each part of the odontogenic organ, specific differences were found within the bulbous part in the upper incisor. There was a more definitive boundary between the outer dental epithelium and stellate reticulum, a more intimate relationship of cell streams to the stellate reticulum, and a noticeable lack of swirling of cells as part of the streams. These features suggest that the activity inside the bulbous part is less intense in the upper incisor than it is in the lower incisor. In addition, the relationships between the bulbous part, the "U"-shaped part and the root sheath part of the odontogenic organ and the enamel organ were described for the upper incisor.  相似文献   

19.
FGF10 maintains stem cell compartment in developing mouse incisors   总被引:27,自引:0,他引:27  
Mouse incisors are regenerative tissues that grow continuously throughout life. The renewal of dental epithelium-producing enamel matrix and/or induction of dentin formation by mesenchymal cells is performed by stem cells that reside in cervical loop of the incisor apex. However, little is known about the mechanisms of stem cell compartment formation. Recently, a mouse incisor was used as a model to show that fibroblast growth factor (FGF) 10 regulates mitogenesis and fate decision of adult stem cells. To further illustrate the role of FGF10 in the formation of the stem cell compartment during tooth organogenesis, we have analyzed incisor development in Fgf10-deficient mice and have examined the effects of neutralizing anti-FGF10 antibody on the developing incisors in organ cultures. The incisor germs of FGF10-null mice proceeded to cap stage normally. However, at a later stage, the cervical loop was not formed. We found that the absence of the cervical loop was due to a divergence in Fgf10 and Fgf3 expression patterns at E16. Furthermore, we estimated the growth of dental epithelium from incisor explants of FGF10-null mice by organ culture. The dental epithelium of FGF10-null mice showed limited growth, although the epithelium of wild-type mice appeared to grow normally. In other experiments, a functional disorder of FGF10, caused by a neutralizing anti-FGF10 antibody, induced apoptosis in the cervical loop of developing mouse incisor cultures. However, recombinant human FGF10 protein rescued the cervical loop from apoptosis. Taken together, these results suggest that FGF10 is a survival factor that maintains the stem cell population in developing incisor germs.  相似文献   

20.
In chimpanzees, the cutting edge of the incisor battery is longer in relation to the length of the molar row than in any other hominoid, extant or fossil, the only other lineage approaching it being the orangutan. Apart from their increased mesio-distal dimensions, the upper and lower incisors of chimpanzees differ in additional ways from those of almost all other hominoids. The I2/ is enlarged, so that the difference in size between it and the central upper incisor is less than it is in the heteromorphic upper incisors of other hominoids. The lower incisors are expanded mesio-distally, so much so that isolated I/2 crowns can resemble upper central incisors. In chimpanzees the lingual surface of the lower incisors is generally more procumbent than it is in other hominoids, which have more vertically oriented incisor crowns and there is a greater difference in enamel thickness between labial and lingual sides. The re-orientation of the lower incisor crown is reflected in the root, which in lateral view is anteriorly concave in chimpanzees whereas it is more orthogonal or convex in other hominoids. The molars of chimpanzees, especially the lowers, have extensive and relatively deep occlusal basins, and the main cusps are peripheralised and labio-lingually compressed, making them more trenchant than those of other hominoids. This paper examines the incisor-lower molar proportions in extinct and living hominoids and develops a new hypothesis about the evolution of the dentition of chimpanzees and links it to their diet. It also examines the incisor-molar proportions of hominids and African apes in order to throw light on the phylogenetic relationships between them. It is shown that chimpanzees are highly derived in this respect and that several recent ideas concerning the chimp-like appearance of the last common ancestor of hominids and African apes are likely to be incorrect.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号