首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The administration of delta-9-tetrahydrocannabinol (delta 9-THC, 0.078-5.0 mg/kg, i.v.) to rats anesthetized with pentobarbital caused as much as a 50% decrease in mean arterial blood pressure, heart rate and respiratory rate in a dose-dependent manner. Delta-9(11)-tetrahydrocannabinol (delta 9(11)-THC) was approximately 8-fold less potent than delta 9-THC in its hypotensive effect and had smaller effects on heart and respiratory rates that were not dose-related at doses below 5 mg/kg. Alternate injections of epinephrine (2 micrograms/kg) with vehicle and increasing cannabinoid doses (1.25-5.0 mg/kg) indicated a potentiation of both the duration of the pressor effect and the magnitude of the reflex bradycardic effect of epinephrine by both delta 9- and delta 9(11)-THC. Epinephrine also produced arrhythmias in rats receiving cannabinoids, but not in rats receiving alternate injections of vehicle. It is concluded that both cannabinoids have adverse effects on the cardiovascular system and adverse interactions with epinephrine in rats anesthetized with pentobarbital.  相似文献   

2.
Neutron diffraction measurements have been utilized to study the effects of delta 9-tetrahydrocannabinol (delta 9-THC) and delta 8-tetrahydrocannabinol (delta 8-THC) incorporated in phospholipid membranes of dipalmitoylphosphatidylcholine (DPPC). Low-angle diffraction indicated that these cannabinoids induce increases in interlamellar spacing similar to those produced by cholesterol. Wide-angle diffraction indicated significant differences in how the intralamellar structure is affected by the inclusion of either cannabinoids or cholesterol. Similar weight percentages of cholesterol and cannabinoids in membranes yielded different thermal analysis profiles but the profiles for membranes with either delta 8 or delta 9-THC were similar. Since the neutron diffraction results for inclusions of delta 8 and delta 9-THC were also similar, this suggests that the difference in psychoactivity of delta 8 and delta 9-THC is probably due to interactions with membrane proteins rather than with phospholipids.  相似文献   

3.
1,2-Epoxyhexahydrocannabinol is a metabolite of delta 1-tetrahydrocannabinol. Because many epoxides are mutagens, we investigated 1,2-epoxyhexahydrocannabinol as well as delta 1-tetrahydrocannabinol for mutagenicity with Salmonella typhimurium TA1535, TA1537, TA98 and TA100 in the presence and in the absence of S9 mix from liver homogenate of rats treated with Aroclor 1254. Additionally, an epoxide hydratase inhibitor was used in some experiments. Whereas several other epoxides and further positive controls, not requiring activation or activated under the same conditions, respectively, showed strong mutagenicity, no indications of a mutagenic hazard by 1,2-epoxyhexahydrocannabinol or by delta 1-tetrahydrocannabinol were found.  相似文献   

4.
delta 9-Tetrahydrocannabinol and two of its metabolites, 11-hydroxy-delta 9-tetrahydrocannabinol and 11-nor-9-carboxy-delta 9-tetrahydrocannabinol, can be measured in a single 1-ml sample of blood, plasma, or urine by a new assay which combines a relatively rapid extraction procedure with capillary column gas chromatography and negative ion chemical ionization mass spectrometry. Deuterium-labeled analogs of each cannabinoid are added to the physiological specimen as internal standards. Two extracts are obtained from each sample: a neutral fraction containing delta 9-tetrahydrocannabinol and 11-hydroxy-delta 9-tetrahydrocannabinol, and an acid fraction containing 11-nor-9-carboxy-delta 9-tetrahydrocannabinol. The neutral fraction is derivatized by treatment with trifluoroacetic anhydride; the acid fraction is first treated with BF3-methanol followed by reaction with trifluoroacetic anhydride. Under electron-capture chemical ionization conditions the derivatized delta 9-tetrahydrocannabinol and 11-nor-9-carboxy-delta 9-tetrahydrocannabinol give abundant molecular anions ideally suited for selected ion monitoring. The negative ion chemical ionization spectrum of the HO-THC-trifluoroacetate shows no molecular anion. Consequently, quantitation of the hydroxy metabolite is achieved by monitoring a fragment ion formed by loss of CF3CO2 from its molecular anion. The limits of reliable measurement are judged to be 0.1 ng ml-1 for 11-nor-9-carboxy-delta 9-tetrahydrocannabinol, 0.2 ng ml-1 for delta 9-tetrahydrocannabinol and 0.5 ng ml-1 for 11-hydroxy-delta 9-tetrahydrocannabinol. Four examples are given of the application of the assay to the analysis of specimens of medico-legal importance.  相似文献   

5.
The present investigation was undertaken to determine whether delta 9-tetrahydrocannabinol (delta 9-THC) decreases host resistance to herpes simplex virus type 2 vaginal infection in the guinea pig. The guinea pig was selected as the host since it has been shown to express a spectrum of primary herpes genitalis which is similar to that in humans. Animals were administered delta 9-THC or vehicle intraperitoneally on Days 1-4, 8-11, and 15-18. Herpes simplex virus was introduced intravaginally on Day 2. Host resistance to virus infection was assessed by comparing frequency and severity of lesions, virus shedding, and animal mortalities. Virus-infected animals treated with drug at doses of 4 and 10 mg/kg exhibited significantly greater severity of genital disease during the 30-day period of study when compared to virus-inoculated vehicle controls. A direct relationship was noted between dose of delta 9-THC and cumulative mortalities on Day 14 following primary infection. These results indicate that delta 9-THC decreases host resistance to herpes simplex virus type 2 vaginal infection in the guinea pig.  相似文献   

6.
P J Little  B R Martin 《Life sciences》1991,48(12):1133-1141
The effects of delta 9-THC and other cannabinoids on cAMP levels in synaptosomes from mouse brains were investigated in order to determine whether cannabinoids produced their behavioral effects through alterations in adenylate cyclase. delta 9-THC (0.01-10 microM) did not significantly alter basal cAMP levels, whereas delta 9-THC and other cannabinoids were able to alter forskolin-stimulated cAMP levels in synaptosomes. In general, three kinds of responses were observed. Some cannabinoids displayed a modest, concentration-dependent decrease in cAMP levels, producing significant inhibition between 1-10 microM. Other cannabinoids, including delta 9-THC and delta 8-THC, appeared to produce a biphasic effect in that inhibition of cAMP was observed only at a single concentration. Finally, some analogs were unable to significantly alter forskolin-stimulated cAMP. There was not a clear relationship between the ability of the cannabinoids to alter cAMP levels in synaptosomes and the behavioral effects observed in mice. However, it was demonstrated that the analogs which are the most potent in producing cannabimimetic effects in mice were the analogs which inhibited cAMP in a concentration-dependent manner. While cannabinoids were able to alter cAMP levels in synaptosomes, the ability to alter cAMP levels does not appear to be absolutely necessary for the production of cannabinoid effects in mice.  相似文献   

7.
Anticonvulsant doses of Δ9-tetrahydrocannabinol (Δ9-THC) markedly lower body temperature in mice at an ambient temperature of 22°C, but there is little such effect at 30°C. The anticonvulsant properties of Δ9-THC are as follows: The drug abolishes hind-limb extension in a maximal electroshock (MES) test, elevates both the MES (extensor) and 6-Hz-electroshock thresholds, exerts no effect on the 60-Hz-electroshock threshold, and enhances minimal seizures caused by pentylenetetrazol. All anticonvulsant properties studied, with the exception of the 60-Hz-electroshock threshold, were unaffected by the hypothermia resulting at 22°C. Additional experiments with Δ9-THC indicated that chronic treatment results in the development of tolerance, as determined by the MES test with rats. The four principal naturally occurring cannabinoids, Δ9-THC, Δ8-THC, cannabinol and cannabidiol, display anticonvulsant activity, as does the major, primary metabolite of Δ9-THC, 11-hydroxy-Δ9-THC. Of all agents investigated in mice, the synthetic cannabinoids, dimethylheptylpyran and its isomers, are the most potent anticonvulsants. The results of a study of the relative motor toxicity and anticonvulsant activity of the cannabinoids demonstrate that these properties are at least partially separable among the various agents.  相似文献   

8.
Chemical investigation of the pollen grain collected from male plants of Cannabis sativa L. resulted in the isolation for the first time of two flavonol glycosides from the methanol extract, and the identification of 16 cannabinoids in the hexane extract. The two glycosides were identified as kaempferol 3-O-sophoroside and quercetin 3-O-sophoroside by spectroscopic methods including high-field two-dimensional NMR experiments. The characterisation of each cannabinoid was performed by GC-FID and GC-MS analyses and by comparison with both available reference cannabinoids and reported data. The identified cannabinoids were delta9-tetrahydrocannabiorcol, cannabidivarin, cannabicitran, delta9-tetrahydrocannabivarin, cannabicyclol, cannabidiol, cannabichromene, delta9-tetrahydrocannabinol, cannabigerol, cannabinol, dihydrocannabinol, cannabielsoin, 6a, 7, 10a-trihydroxytetrahydrocannabinol, 9, 10-epoxycannabitriol, 10-O-ethylcannabitriol, and 7, 8-dehydro-10-O-ethylcannabitriol.  相似文献   

9.
The enzymatic properties of the three types of microsomal acyl-CoA desaturases, delta 6-, delta 9- and delta 5-desaturases, were immunologically compared using a monospecific antibody raised against the purified linoleoyl-CoA desaturase (delta 6-desaturase). By the double immunodiffusion technique, the anti-delta 6-desaturase antibody showed a single precipitin line to the purified delta 6-desaturase and microsomes treated with Triton X-100, but no line was observed with the partially purified delta 9-desaturase. The antibody even inhibited definitely delta 6-desaturase activity in microsomes, but neither stearoyl-CoA (delta 9-) nor eicosatrienoic acid (delta 5-) desaturations were inhibited. By these immunological investigations it was confirmed that terminal delta 6-desaturase is different enzyme from desaturases delta 9- and delta 5.  相似文献   

10.
Chronic treatment of rats with delta9-tetrahydrocannabinol (delta9-THC) results in tolerance to its acute behavioral effects. In a previous study, 21-day delta9-THC treatment in rats decreased cannabinoid activation of G proteins in brain, as measured by in vitro autoradiography of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding. The present study investigated the time course of changes in cannabinoid-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding in both brain sections and membranes, following daily delta9-THC treatments for 3, 7, 14, and 21 days. Autoradiographic results showed time-dependent decreases in WIN 55212-2-stimulated [35S]GTPgammaS and [3H]WIN 55212-2 binding in cerebellum, hippocampus, caudate-putamen, and globus pallidus, with regional differences in the rate and magnitude of down-regulation and desensitization. Membrane binding assays in these regions showed qualitatively similar decreases in WIN 55212-2-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding (using [3H]SR141716A), and demonstrated that decreases in ligand binding were due to decreases in maximal binding values, and not ligand affinities. These results demonstrated that chronic exposure to delta9-THC produced time-dependent and region-specific down-regulation and desensitization of brain cannabinoid receptors, which may represent underlying biochemical mechanisms of tolerance to cannabinoids.  相似文献   

11.
Cannabinoids, the active components of marihuana, exert a variety of effects in humans. Many of these effects are mediated by binding to two types of cannabinoid receptor, CB1 and CB2. Although CB1 is located mainly in the central nervous system, it may also be found in peripheral tissues. Here, we study the effect of cannabinoids in the production of nerve growth factor by the prostate tumor cell line PC-3. We show that addition of Delta(9)-tetrahydrocannabinol to PC-3 cells stimulated nerve growth factor production in a dose-dependent and time-dependent manner. Maximal effect was observed at 0.1 microM Delta(9)-tetrahydrocannabinol and 72 h of treatment. Stimulation was reversed by the CB1 antagonists AM 251 and SR 1411716A. Pre-treatment of cells with pertussis toxin also prevented the effect promoted by Delta(9)-tetrahydrocannabinol. These results indicate that Delta(9)-tetrahydrocannabinol stimulation of nerve growth factor production in these cells was mediated by the cannabinoid CB1 receptor. The implication of Raf-1 activation in the mode of action of Delta(9)-tetrahydrocannabinol is also suggested.  相似文献   

12.
Deuterium labelling and high resolution mass measurements have been used to investigate the fragmentation mechanisms leading to diagnostic ions in the mass spectra of the trimethylsilyl derivatives of 58 hydroxy and acid metabolites of delta 1- and delta 6-tetrahydrocannabinol and of two related compounds, 2 alpha- and 2 beta-hydroxy-delta 6-tetrahydrocannabinol. The spectra of most of the hydroxy metabolites contained abundant ions which were characteristic of the position of hydroxy substitution. These could be used diagnostically to determine the structures of polysubstituted metabolites.  相似文献   

13.
The effects of dietary vitamin B-2 and vitamin E on delta9-desaturation of stearoyl-CoA, catalase, glutathione peroxidase, superoxide dismutase and electron transport components in rat liver microsomes have been investigated. delta9-desaturase activities were decreased on diets deficient of vitamin B-2, E and supplemented with E. Among the peroxide-scavenging enzymes, only the catalase activity in microsomes correlates significantly with delta9-desaturase activity. In vitro addition of bovine catalase had no effect on microsomal delta9-desaturase activity on control diet. However, it enhanced the delta9-desaturation in microsomes on vitamin B-2-deficient diet which contained low catalase and high superoxide dismutase activities, compared to those in microsomes of control diet. It is suggested that the hydrogen peroxide-generating and -decomposing systems may play an important role on the delta9-desaturase activity in microsomes.  相似文献   

14.
Cannabis is the most widely used illicit drug in many western countries. Its psychoactive ingredient, delta9-tetrahydrocannabinol (THC), produces a variety of effects in animals and humans that are probably mediated by specific cannabinoid receptors in the brain and interactions with several neurotransmitter and neuromodulator systems. For instance, recent research has revealed an important mutual functional relationship between cannabinoids and endogenous opioid systems in mediating the pharmacological and behavioral actions produced by these agents, including their reinforcing effects. Perinatal exposure to and interactions between cannabinoids and opioids might also have long-term behavioral consequences lasting into adulthood. In this work, we present preliminary evidence examining the potential effects of maternal exposure to THC on the motivational properties of morphine in male and female adult rats, as measured by an intravenous opiate self-administration paradigm.  相似文献   

15.
Microsomes prepared from the livers of 4-week-old rats were, after extraction with 0.1 M potassium phosphate buffer, pH 7.4, unable to catalyse either the delta6 desaturation of alpha-linolenic acid (9c.12c.15c., 18 : 3) into 6c.9c.12c.15c., 18 : 4 or the delta5 desaturation of eicosatrienoic acid (8c.11c.14c., 20 : 3) into arachidonic acid (5c.8c.11c.14c., 20 : 4). Both these enzymes only showed full activity after incubation of the microsomes with either the 100 000 X g supernatant fraction or with purified bovine catalase. Bovine serum albumin, while capable of restoring 50% of the delta5 desaturase activity has no effect on the delta6 desaturase. In contrast the delta9 desaturase activity of microsomes was never completely lost after extraction with buffer but could be stimulated by optimum concentrations of both bovine serum albumin and catalase. The significance of the different responses of the three desaturases to the cytoplasmic components is discussed.  相似文献   

16.
The effects of (-)-delta 8-tetrahydrocannabinol (delta 8-THC) and its biologically inactive O-methyl ether analog on model phospholipid membranes were studied using a combination of differential scanning calorimetry (DSC), small angle X-ray diffraction and solid state 2H-NMR. The focus of this work is on the amphipathic interactions of cannabinoids with membranes and the role of the free phenolic hydroxyl group which is the only structural difference between these two cannabinoids. Identically prepared aqueous multilamellar dispersions of phosphatidylcholines in the absence and presence of cannabinoids were used. The DSC thermograms and X-ray diffraction patterns of these preparations allowed us to detect the strikingly different manners in which these two cannabinoids affect the thermotropic properties and the thickness of the bilayer. In order study the effects of the cannabinoids on different regions of the bilayer, we used solid state 2H-NMR with four sets of model membranes from dipalmitoylphosphatidylcholine deuterated in different sites, viz., the choline trimethylammonium head group, or one of the following three groups in the acyl chains; the 2'-methylene, 7'-methylene, 16'-methyl groups. Analysis of quadrupolar splittings indicated that delta 8-THC resides near the bilayer interface and the inactive analog sinks deeper towards the hydrophobic region. The temperature dependence of the solid state 2H-NMR spectra showed that, during the bilayer phase transition, the disordering of the choline head groups is a separate event from the melting of the acyl chains, and that amphipathic interactions between delta 8-THC and the membrane separate these two events further apart in temperature. The inactive analog lacks the ability to induce such a perturbation.  相似文献   

17.
The anticonvulsant activity of delta9-tetrahydrocannabinol (delta9-THC) has been determined against seizures induced in epileptic chickens by intermittent photic stimulation (IPS) and in epileptic and nonepileptic chickens by Metrazol. Intravenous administration of the drug reduced both the severity and incidence of seizures evoked by IPS in epileptic chickens. This anticonvulsant action was accompanied by a reduction in frequency of inter-ictal slow-wave high-voltage electroencephalographic activity and by the absence of spiking during IPS. delta9-THC did not affect the incidence of Metrazol-induced seizures in epileptic or nonepileptic chickens.  相似文献   

18.
Recent studies have shown that the pharmacological tolerance observed after prolonged exposure to synthetic or plant-derived cannabinoids in adult rats is accompanied by down-regulation/desensitization of brain cannabinoid receptors. However, no evidence exists on possible changes in the contents of the endogenous ligands of cannabinoid receptors in the brain of cannabinoid-tolerant rats. The present study was designed to elucidate this possibility by measuring, by means of isotope dilution gas chromatography/mass spectrometry, the contents of both anandamide (arachidonoylethanolamide; AEA) and its biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), and 2-arachidonoylglycerol (2-AG) in several brain regions of adult male rats treated daily with delta9-tetrahydrocannabinol (delta9-THC) for a period of 8 days. The areas analyzed included cerebellum, striatum, limbic forebrain, hippocampus, cerebral cortex, and brainstem. The same regions were also analyzed for cannabinoid receptor binding and WIN-55,212-2-stimulated guanylyl-5'-O-(gamma-[35S]thio)-triphosphate ([35S]GTPgammaS) binding to test the development of the well known down-regulation/desensitization phenomenon. Results were as follows: As expected, cannabinoid receptor binding and WIN-55,212-2-stimulated [35S]GTPgammaS binding decreased in most of the brain areas of delta9-THC-tolerant rats. The only region exhibiting no changes in both parameters was the limbic forebrain. This same region exhibited a marked (almost fourfold) increase in the content of AEA after 8 days of delta9-THC treatment. By contrast, the striatum exhibited a decrease in AEA contents, whereas no changes were found in the brainstem, hippocampus, cerebellum, or cerebral cortex. The increase in AEA contents observed in the limbic forebrain was accompanied by a tendency of NArPE levels to decrease, whereas in the striatum, no significant change in NArPE contents was found. The contents of 2-AG were unchanged in brain regions from delta9-THC-tolerant rats, except for the striatum where they dropped significantly. In summary, the present results show that prolonged activation of cannabinoid receptors leads to decreased endocannabinoid contents and signaling in the striatum and to increased AEA formation in the limbic forebrain. The pathophysiological implications of these findings are discussed in view of the proposed roles of endocannabinoids in the control of motor behavior and emotional states.  相似文献   

19.
Cannabinoid receptors (CB1-R) are the target of a novel class of neuromodulators, the endocannabinoids. Yet, their signalling mechanisms in adult brain are poorly understood. We report that, in rat and mouse hippocampal slices, anandamide and 2-arachidonoylglycerol, synthetic cannabinoids, and delta(9)-tetrahydrocannabinol activated p38 mitogen-activated protein kinases (MAPK), but not c-Jun N-terminal kinase (JNK). In contrast, lysophosphatidic acid (LPA), a lipid messenger acting on different receptors, increased both p38-MAPK and JNK phosphorylation. The effects of cannabinoids on p38-MAPK were mediated through activation of CB1-R because they were blocked in the presence of SR 141716 A and absent in CB1-R knockout mice, two conditions that did not alter the effects of LPA. The activation of p38-MAPK by cannabinoids was insensitive to inhibitors of SRC: These results provide new insights into the cellular mechanisms by which cannabinoids exert their effects in hippocampus.  相似文献   

20.
The effects of (-) trans-delta 9-tetrahydrocannabinol (THC) and its metabolite cannabidiol (CBD) were investigated on evoked responses in the CA1 and dentate gyrus regions of the guinea pig transverse hippocampal slice. In both areas orthodromically evoked responses were enhanced by 10(-7) M THC, while 10(-6) M THC caused depression. Antidromic responses were not significantly affected. Antidromically-evoked inhibition in the CA1 region was decreased at low doses and unaffected at higher doses, while the facilitation by orthodromic interaction was unaffected at both dose ranges. The early part of the orthodromic field potential corresponding to the excitatory postsynaptic potential (EPSP) was enhanced at 10(-7) M in both areas. CBD (10(-6) M) decreased facilitation in CA1, and caused delayed excitation in the dentate granule layer. This study supports the conclusion that the biphasic effects of THC are dose dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号