首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxygen exchange occurring during the acto-S-1 ATPase reaction was analyzed based on the distribution of 18O-labeled species of P1 using [gamma-18O]ATP as a substrate. Evidence was found for the two-route mechanism in which ATP is hydrolyzed via the dissociation of acto-S-1 into F-actin and the S-1-phosphate-ADP complex, S-1PADP, and their recombination, and also hydrolyzed without the dissociation of acto-S-1 (Inoue, A., Shigekawa, M., & Tonomura, Y. (1973) J. Biochem. 74, 923-934; Inoue, A., Ikebe, M., & Tonomura, Y. (1980) J. Biochem. 88, 1663-1677). When ATP was mainly hydrolyzed without the dissociation of acto-S-1, the extent of oxygen exchange was low. When ATP was hydrolyzed by both routes, the distribution of product P1 with 3, 2, 1, and 0 18O atoms showed a mixture resulting from low and high oxygen exchange. The rate of ATPase without the dissociation of acto-S-1 can be estimated from the rate of the overall reaction (v), the rate of recombination of S-1PADP with F-actin (vr), and the extent of dissociation of acto-S-1 (a). The distribution of the P1 species measured was almost equal to that calculated from the ratio of ATP hydrolysis via the two pathways as avr and v-avr, respectively. This result indicates that the rates of the dissociation of acto-S-1PADP into S-1PADP and F-actin and their recombination are much lower than the rate of decomposition of the acto-S-1PADP complex into acto-S-1 + ADP + Pi.  相似文献   

2.
The rate constant for the binding of myosin subfragment-1 (S-1) with F-actin in the absence of nucleotide, k1, and that for dissociation of the F-actin-myosin subfragment-1 complex (acto-S-1), k-1, were measured independently. The rate of S-1 binding with F-actin was measured from the time course of the change in the light scattering intensity after mixing S-1 with various concentrations of F-actin and k1 was found to be 2.55 X 10(6) M-1 X S-1 at 20 degrees C. The dissociation rate of acto-S-1 was determined using F-actin labeled with pyrenyl iodoacetamide (Pyr-FA). Pyr-FA, with its fluorescence decreased by binding with S-1, was mixed with acto-S-1 complex and the rate of displacement of F-actin by Pyr-FA was measured from the decrease in the Pyr-FA fluorescence intensity. The k-1 value was calculated to be 8.5 X 10(-3) S-1 (or 0.51 min-1). The value of the dissociation constant of S-1 from acto-S-1 complex, Kd, was calculated from Kd = k-1/k1 to be 3.3 X 10(-9) M at 20 degrees C. Kd was also measured at various temperatures (0-30 degrees C), and the thermodynamic parameters, delta G degree, delta H degree, and delta S degree, were estimated from the temperature dependence of Kd to be -11.3 kcal/mol, +2.5 kcal/mol, and +47 cal/deg . mol, respectively. Thus, the binding of the myosin head with F-actin was shown to be endothermic and entropy-driven.  相似文献   

3.
The synthetic heptapeptide, Ile-Arg-Ile-Cys-Arg-Lsy-Gly-ethoxy, an analog of one of the actin binding sites on myosin head (S-site) (Suzuki, R., Nishi, N., Tokura, S., and Morita, F. (1987) J. Biol. Chem. 262, 11410-11412) was found to completely inhibit the acto-S-1 (myosin subfragment 1) ATPase activity. The effect of the heptapeptide on the binding ability of S-1 for F-actin was determined by an ultracentrifugal separation. Results indicated that the heptapeptide scarcely dissociated the acto-S-1 complex during the ATPase reaction. Consistent results were obtained from the acto-S-1 ATPase activities determined as a function of S-1 concentrations in the absence or presence of the heptapeptide at a fixed F-actin concentration. The heptapeptide reduced the maximum acto-S-1 ATPase activity without affecting the apparent dissociation constant of the acto-S-1 complex. The heptapeptide bound by a site on actin complementary to the S-site probably inhibits the activation of S-1 ATPase by F-actin. These results suggest that S-1 ATPase is necessary to rebind transiently with F-actin at the S-site in order to be activated by F-actin. This is consistent with the activation mechanism proposed assuming the two actin-binding sites on S-1 ATPase (Katoh, T., and Morita F. (1984) J. Biochem. (Tokyo) 96, 1223-1230).  相似文献   

4.
S P Chock  P B Chock  E Eisenberg 《Biochemistry》1976,15(15):3244-3253
A single cycle of adenosine 5'-triphosphate (ATP) hydrolysis by a complex of actin and myosin subfragment one (acto-S-1) was studied in a stopped-flow apparatus at low temperature and low ionic strength, using light scattering to monitor the interaction of S-1 with actin and fluorescence to detect the formation of fluorescent intermediates. Our results show that the addition of a stoichiometric concentration of ATP to the acto-S-1 causes a cycle consisting of first, a rapid dissociation of the S-1 from actin by ATP; second, a slower fluorescence change in the S-1 that may be related to the initial phosphate burst; and third, a much slower rate limiting recombination of the S-1 with actin. This latter step equals the acto-S-1 steady-state adenosine 5'-triphosphatase (ATPase) rate at both low and high actin concentrations, and like the steady-state ATPase levels off at a V max of 0.9s-1 at high actin concentration. Therefore, the release of adenosine 5'-diphosphate and inorganic phosphate is not the rate-limiting step in the acto-S-1 ATPase. Rather, a slow first-order step corresponding to the previously postulated transition from the refractory to the nonrefractory state precedes the rebinding of the S-1 to the actin during each cycle of ATP hydrolysis.  相似文献   

5.
The kinetic properties of the hydrolyses of 8-Br ATP and 8-SCH3 ATP by myosin [EC 3.6.1.3] and actomyosin were compared with those of ATP, and the following results were obtained. The Ca-NTPase activities of myosin using these two ATP analogs as substrates were smaller than that of ATPase, and the NTPase activities toward these analogs were strongly suppressed by EDTA. The Mg-NTPase activities toward these analogs were higher in a medium of high ionic strength than in a medium of low ionic strength, in contrast to the activity of Mg-ATPase. These analogs did not produce any initial burst of Pi liberation, activation of myosin NTPase by F-actin, or superprecipitation of actomyosin. The interactions between 8-Br ATP and HMM, acto-HMM, actomyosin, and myofibrils were studied in detail in the presence of Mg2+ in medium of low ionic strength. The Michaelis constant, Km, and the maximum rate, Vm, of 8-Br ATPase of HMM were 27 muM and 21 min-1, respectively. The fluorescence change of HMM induced by 8-Br ATP also followed the Michaelis-Menten equation, and the Michaelis constant, Kf1, was as low as 4 muM. Acto-HMM and acto-S-1 were fully dissociated by the addition of 8-Br ATP. The relation between the extent of dissociation of acto-HMM and the concentration of 8-Br ATP followed the Michaelis-Menten equation, and the apparent dissociation constant, Kd, was 22 muM. This Kd value is almost equal to the Km value of 8-Br ATPase of HMM described above. Myofibrillar contraction was not supported by 8-Br ATP. It was concluded that in the myosin NTPase reaction with 8-Br ATP as a substrate, M2NTP but not MNDPP is formed in route (1), while MNTP is formed in route (2). It was also concluded that the key intermediate for the actomyosin NTPase reaction is MNDPP, and that dissociation of acto-HMM is induced by the formation of M2NTP and MNTP in routes (1) and (2), respectively.  相似文献   

6.
The reaction intermediates formed by the two heads of smooth muscle myosin were studied. The amount of myosin-phosphate-ADP complex, MPADP, formed was measured from the Pi-burst size over a wide range of ATP concentrations. At low concentrations of ATP, the Pi-burst size was 0.5 mol/mol myosin head, and the apparent Kd value was about 0.15 microM. However, at high ATP concentrations, the Pi burst size increased from 0.5 to 0.75 mol/mol myosin head with an observed Kd value of 15 microM. The binding of nucleotides to gizzard myosin during the ATPase reaction was directly measured by a centrifugation method. Myosin bound 0.5 mol of nucleotides (ATP and ADP) with high affinity (Kd congruent to 1 microM) and 0.35 mol of nucleotides with low affinity (Kd = 24 microM) for ATP. These results indicate that gizzard myosin has two kinds of nucleotide binding sites, one of which forms MPADP with high affinity for ATP while the other forms MPADP and MATP with low affinity for ATP. We studied the correlation between the formation of MPADP and the dissociation of actomyosin. The amount of Pi-burst size was not affected by the existence of F-actin, and when 0.5 mol of ATP per mol of myosin head was added to actomyosin (1 mg/ml F-actin, 5 microM myosin at 0 degrees C) most (93%) of the added ATP was hydrolyzed in the Pi-burst phase. All gizzard actomyosin dissociated when 1 mol of ATP per mol myosin head was added to actomyosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

8.
The bindings of S-1 and the two heads of HMM with pyrene-labeled F-actin were studied using the change in light-scattering intensity or that in the fluorescence intensity of the pyrenyl group. At low ionic strength (50 mM KCl), both S-1 and HMM became bound tightly with F-actin (Kd less than 0.1 microM) and both heads of HMM became bound to F-actin. The affinities of S-1 and HMM for F-actin decreased with increasing KCl concentration. In 1 M KCl, the Kd values of S-1 and HMM for F-actin were 11 and 0.58 microM, respectively. Thus, HMM was bound to F-actin 19 times more tightly than S-1. We compared the extent of binding of HMM to F-actin measured by a centrifugation method with that measured by the fluorescence change of pyrenyl-group, and found that even in 1 M KCl, HMM became bound to F-actin with a two-headed attachment. We measured the kinetics of binding and dissociation of acto-S-1 and acto-HMM from the time course of the change in light-scattering intensity after mixing S-1 or HMM with F-actin at 1 M KCl and that after mixing 1 M KCl with acto-S-1 or acto-HMM formed at low ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
F-Actin bindings to subfragment-1 (S-1) and S-1 after limited proteolysis by trypsin (S-1t) were studied in the absence and presence of ATP by means of ultracentrifugation. No significant difference in the affinities for F-actin was observed between S-1 and S-1t in the absence of ATP. In contrast, the affinity for F-actin in the presence of ATP was decreased about 50 times by the limited proteolysis of the S-1 heavy chain. The S-1 whose SH1 and SH2 groups were cross-linked by N,N'-p-phenylenedimaleimide bound F-actin weakly. The affinity for F-actin was similar to that of unmodified S-1 in the presence of ATP and was also decreased markedly by limited proteolysis of the cross-linked S-1. Reciprocals of the dissociation constant of acto-S-1 complex decreased markedly with increase of ionic strength in the presence of ATP, but decreased only slightly at the rigor state. All these results are consistent with our proposal that S-1 has two different actin binding sites, as reported previously (Katoh, T., Imae, S., & Morita, F. (1984) J. Biochem. 95, 447-454). The mechanism of activation of S-1 ATPase by F-actin is discussed.  相似文献   

10.
The fluorescent nucleotides epsilon ADP and epsilon ATP were used to study the binding and hydrolysis mechanisms of subfragment 1 (S-1) and acto-subfragment 1 from striated and smooth muscle. The quenching of the enhanced fluorescence emission of bound nucleotide by acrylamide analyzed either by the Stern-Volmer method or by fluorescence lifetime measurements showed the presence of two bound nucleotide states for 1-N6-ethenoadenosine triphosphate (epsilon ATP), 1-N6-ethenoadenosine diphosphate (epsilon ADP), and epsilon ADP-vanadate complexes with S-1. The equilibrium constant relating the two bound nucleotide states was close to unity. Transient kinetic studies showed two first-order transitions with rate constants of approximately 500 and 100 s-1 for both epsilon ATP and epsilon ADP and striated muscle S-1 and 300 and 30 s-1, respectively, for smooth muscle S-1. The hydrolysis of [gamma-32P] epsilon ATP yielded a transient phase of small amplitude (less than 0.2 mol/site) with a rate constant of 5-10 s-1. Consequently, the hydrolysis of the substrate is a step in the mechanism which is distinct from the two conformational changes induced by the binding of epsilon ATP. An essentially symmetric reaction mechanism is proposed in which two structural changes accompany substrate binding and the reversal of these steps occurs in product release. epsilon ATP dissociates acto-S-1 as effectively as ATP. For smooth muscle acto-S-1, dissociation proceeds in two steps, each accompanied by enhancement of fluorescence emission. A symmetric reaction scheme is proposed for the acto-S-1 epsilon ATPase cycle. The very similar kinetic properties of the reactions of epsilon ATP and ATP with S-1 and acto-S-1 suggest that two ATP intermediate states also occur in the ATPase reaction mechanism.  相似文献   

11.
We have investigated the steps in the actomyosin ATPase cycle that determine the maximum ATPase rate (Vmax) and the binding between myosin subfragment one (S-1) and actin which occurs when the ATPase activity is close to Vmax. We find that the forward rate constant of the initial ATP hydrolysis (initial Pi burst) is about 5 times faster than the maximum turnover rate of the actin S-1 ATPase. Thus, another step in the cycle must be considerably slower than the forward rate of the initial Pi burst. If this slower step occurs only when S-1 is complexed with actin, as originally predicted by the Lymn-Taylor model, the ATPase activity and the fraction of S-1 bound to actin in the steady state should increase almost in parallel as the actin concentration is increased. As measured by turbidity determined in the stopped-flow apparatus, the fraction of S-1 bound to actin, like the ATPase activity, shows a hyperbolic dependence on actin concentration, approaching 100% asymptotically. However, the actin concentration required so that 50% of the S-1 is bound to actin is about 4 times greater than the actin concentration required for half-maximal ATPase activity. Thus, as previously found at 0 degrees C, at 15 degrees C much of the S-1 is dissociated from actin when the ATPase is close to Vmax, showing that a slow first-order transition which follows the initial Pi burst (the transition from the refractory to the nonrefractory state) must be the slowest step in the ATPase cycle. Stopped-flow studies also reveal that the steady-state turbidity level is reached almost instantaneously after the S-1, actin, and ATP are mixed, regardless of the order of mixing. Thus, the binding between S-1 and actin which is observed in the steady state is due to a rapid equilibrium between S-1--ATP and acto--S-1--ATP which is shifted toward acto-S-1--ATP at high actin concentration. Furthermore, both S-1--ATP and S-1--ADP.Pi (the state occurring immediately after the initial Pi burst) appear to have the same binding constant to actin. Thus, at high actin concentration both S-1--ATP and S-1--ADP.Pi are in rapid equilibrium with their respective actin complexes. Although at very high actin concentration almost complete binding of S-1--ATP and S-1--ADP.Pi to actin occurs, there is no inhibition of the ATPase activity at high actin concentration. This strongly suggests that both the initial Pi burst and the slow rate-limiting transition which follows (the transition from the refractory to the nonrefractory state) occur at about the same rates whether the S-1 is bound to or dissociated from actin. We, therefore, conclude that S-1 does not have to dissociate from actin each time an ATP molecule is hydrolyzed.  相似文献   

12.
F-Actin was partially cross-linked to myosin subfragment-1 (S-1) at various molar ratios (r = S-1/actin) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked acto-S-1 ATPase showed so called "super-activation," Vx. S-1 was added further to the cross-linked acto-S-1 and the ATPase activity, Vy, was measured. Since the added S-1 can interact only with the bare actin protomers within the cross-linked actin filament, the difference, delta V = Vy - Vx - Vs (where Vs is the ATPase activity of the additional S-1 alone), can indicate the state of the bare actin protomers while the cross-linked acto-S-1 is hydrolyzing ATP. With increasing r, delta V decreased much more rapidly than delta Vo(1 - r) (where delta Vo is delta V at r = 0) and reached a minimum around r = 0.15. As r increased further, delta V approached the level of delta Vo(1 - r). When SH1/SH2-blocked S-1 was cross-linked to F-actin, delta V decreased according to delta Vo(1 - r). Therefore, the large reduction of delta V, observed when intact S-1 was cross-linked, was coupled to the high ATPase activity of the cross-linked acto-S-1. Combining these data with other kinetic data, we could deduce that structural distortion in a cross-linked actin induced by the ATPase reaction of the S-1 partner propagated over several bare actin protomers along the filament and reduced their affinity for the S-1-ADP-Pi complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The mechanism of the ATPase [EC 3.6.1.3] reaction of porcine platelet myosin and the binding properties of platelet myosin with rabbit skeletal muscle F-actin were investigated. The kinetic properties of the platelet myosin ATPase reaction, that is, the rate, the extent of fluorescence enhancement of myosin, the size of the initial P1 burst of myosin, and the amount of nucleotides bound to myosin during the ATPase reaction, were very similar to those found for other myosins. Strong binding of platelet myosin with rabbit skeletal muscle F-actin, as found for smooth muscle myosin, was suggested by the following results. The rate of the ATP-induced dissociation of hybrid actomyosin, reconstituted from platelet myosin and skeletal muscle F-actin, was very slow. The amount of ATP necessary for complete dissociation of hybrid actomyosin was 2 mol/mol of myosin, although skeletal muscle actomyosin is known to dissociate completely upon addition of 1 mol ATP per mol of myosin. Unlike skeletal muscle myosin, the EDTA(K+)-ATPase activity of platelet myosin was inhibited by skeletal muscle F-actin. These observations indicate that ATP hydrolysis by vertebrate nonmuscle myosin follows the same mechanism as with other myosins and that the binding properties of nonmuscle myosin with F-actin are similar to those of smooth muscle myosin but not to those of skeletal muscle myosin.  相似文献   

14.
Myosin and F-actin were prepared from bovine carotid arterial smooth muscle and the properties of the binding of myosin to F-actin were compared with those of the binding of skeletal muscle myosin to F-actin. The following differences were observed between skeletal and smooth muscle myosins. 1. The rate of ATP-induced dissociation of arterial actomyosin was equal to that of hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin, but was much lower than those of skeletal muscle actomyosin and of hybrid actomyosin reconstituted from skeletal muscle myosin and arterial F-actin. 2. The amount of ATP necessary for complete dissociation of arterial actomyosin was 2 mol/mol of myosin, although it is well known that skeletal muscle actomyosin is dissociated completely by the addition of 1 mol ATP per mol of myosin. 3. Arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin did not dissociate upon addition of 0.1 mM PPi, while skeletal muscle actomyosin dissociated completely. 4. In the absence of Mg2+, neither dissociation by ATP nor ATPase [EC 3.6.1.3] activity was observed with arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin. On the other hand, skeletal muscle actomyosin dissociated almost completely upon addition of ATP and showed a considerably high ATPase activity. These observations reveal marked differences between myosins from skeletal and smooth muscles in their binding properties to F-actin.  相似文献   

15.
Myosin was prepared from arterial smooth muscle, and a hybrid actomyosin was formed from arterial myosin and rabbit skeletal muscle F-actin. We performed kinetics on the ATPase reaction [EC 3.6.1.3] of arterial myosin and the hybrid actomyosin at high ionic strength, and compared the kinetic properties of arterial myosin ATPase with those of skeletal muscle myosin ATPase. No significant difference was found between these two myosins in the size of the initial Pi burst, the amount of bound nucleotides, and the rates of various elementary steps in the ATPase reaction. On the other hand, two important differences were observed between the hybrid actomyosin and skeletal muscle actomyosin: (i) The amounts of ATP necessary for complete dissociation of the hybrid and skeletal muscle actomyosins were 2 and 1 mol/mol of myosin, respectively. (ii) The rate of dissociation of the hybrid actomyosin induced by ATP was much lower than that of skeletal muscle actomyosin and also was lower than that of fluorescence enhancement.  相似文献   

16.
We have synthesized the mixed disulfide, S-(2-nitro-5-thiobenzoic acid) cysteaminyl-EDTA, using a rapid procedure and water-soluble chemistry. Its disulfide-thiol exchange reaction with rabbit myosin subfragment-1 (S-1), analyzed by spectrophotometry, ATPase assays, and peptide mapping, led to the incorporation of the cysteaminyl-EDTA group into only Cys 540 on the heavy chain and into the unique cysteine on the alkali light chains. The former thiol, residing in the strong actin binding site, reacted at a much faster rate with a concomitant 3-fold decrease in the V(max) for acto-S-1 ATPase but without change in the essential enzymatic functions of S-1. Upon chelation of Fe(3+) ions to the Cys 540-bound EDTA and incubation of the S-1 derivative-Fe complex with ascorbic acid at pH 7.5, the 95 kDa heavy chain underwent a conformation-dependent, single-cut oxidative fragmentation within 5-15 A of Cys 540. Three pairs of fragments were formed which, after specific fluorescent labeling and SDS-PAGE, could be positioned along the heavy chain sequence as 68 kDa-26 kDa, 62 kDa-32 kDa, and 54 kDa-40 kDa. Densitometric measurements revealed that the yield of the 54 kDa-40 kDa pair of bands, but not that for the two other pairs, was very sensitive to S-1 binding to nucleotides or phosphate analogues as well as to F-actin. In binary complexes, all the former ligands specifically lowered the yield to 40% of S-1 alone, roughly in the following order: ADP = AMP-PNP > ATP = ADP.AlF(4) > ADP.BeF(x)() > PP(i). By contrast, rigor binding to F-actin increased the yield to 130%. In the ternary acto-S-1-ADP complex, the yield was again reduced to 80%, and it fell to 25% in acto-S-1-ADP.AlF(4), the putative transition state analogue complex of the acto-S-1 ATPase. These different quantitative changes reflect distinct ligand-induced conformations of the secondary structure element whose scission generates the 54 kDa-40 kDa species. According to the S-1 crystal structure, this element could be unambiguously assigned to the switch II helix (residues 475-507) whose N-terminus lies 14.2 A from Cys 540 and would include the ligand-responsive cleavage site. This motif is thought to be crucial for the transmission of sub-nanometer structural changes at the ATPase site to both the actin site and the lever arm domain during energy transduction. Our study illustrates this novel, actin site-specific chemical proteolysis of S-1 as a direct probe of the switch II helix conformational transitions in solution most likely associated with the skeletal cross-bridge cycle.  相似文献   

17.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

18.
Reconstituted actomyosin (ATP phosphohydrolase, EC 3.6.1.3) (0.400 mg F-actin/mg myosin) in 10.0 muM ATP loses 96% of its specific ATPase activity when its reaction concentration is decreased from 42.0 mug/ml down to 0.700 mug/ml. The loss of specific activity at the very low enzyme concentrations is prevented by the addition of more F-actin to 17.6 mug/ml. It is concluded that at low actomyosin concentrations the complex dissociates into free myosin with a very low specific ATPase activity and free F-actin with no ATPase. The dissociation of the essential low molecular weight subunits of myosin from the heavy chains at very low actomyosin concentrations may be a contributing factor. Actomyosin has its maximum specific activity at pH 7.8-8.2. The Km for ATP is 9.4 muM, which is at least 20-fold greater than myosin's Km for ATP. The actin-activated ATPase of myosin follows hyperbolic kinetics with varying F-actin concentrations. The Km values for F-actin are 0.110 muM (4.95 mug/ml) at pH 7.4 and 0.241 muM (10.8 mug/ml) at pH 7.8. The actin-activated maximum turnover numbers for myosin are 9.3 s-1 at pH 7.4 and 11.6 s-1 at pH 7.8. The actomyosin ATPase is inhibited by KCl. This KCl inhibition is not competitive with respect to F-actin, and it is not a simple form of non-competitive inhibition.  相似文献   

19.
The oxygen exchange during ATP hydrolysis by glycerinated muscle fibers, myofibrils, and synthetic actomyosin filaments was studied from the distribution of the [18O]Pi species produced by the hydrolysis of [gamma-18O]ATP. The products were mixtures of two species, one with a low extent of oxygen exchange and the other with a high extent. The low and high extents of oxygen exchange in these two Pi species were the same as those of the acto-S-1 ATPase reaction through the routes with and without the dissociation of actomyosin, respectively (Yasui, M., Ohe, M., Kajita, A., Arata, T., & Inoue, A. [1988] J. Biochem. 104, 550-559). During isometric contraction of glycerinated muscle fibers at 20 degrees C, the fraction of ATP hydrolysis with low extent of oxygen exchange was 0.83 and 0.70, respectively, in 0 and 120 mM KCl. In myofibrils, the fraction of ATP hydrolysis with a low extent of oxygen exchange was 0.72-0.88 in 0-120 mM KCl at 20 degrees C. Therefore, in glycerinated muscle fibers and myofibrils ATP seems to be mainly hydrolyzed through a route without the dissociation of actomyosin, especially at low ionic strength and at room temperature when the tension development is high. ATP hydrolysis through this route may be coupled with muscle contraction.  相似文献   

20.
H-Meromyosin (HMM) was digested with insoluble papain [EC 3.4.22.2]. Neither the size of the initial burst of Pi liberation (0.5 mole/mole of myosin head) nor the Mg2+-ATPase [EC 3.6.1.3] activity of HMM in the steady state was affected by this treatment. Acto-S-1 was obtained by mixing F-actin with HMM digested with insoluble papain (HMM-S-1). The size of the initial burst of Pi liberation of acto-S-1 was 0.35 mole/mole of S-l at an ATP concentration of 0.5 mole/mole of S-1, and 0.5 mole/moleof S-1 at ATP concentrations above 1 mole/mole of S-1...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号