首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misfolded proteins undergo a preferent degradation ruled by the housekeeping bacterial proteolytic system, but upon precipitation as inclusion bodies their stability dramatically increases. The susceptibility of aggregated polypeptides to proteolytic attack remains essentially unexplored in bacteria and also in eukaryotic cells. We have studied here the in vitro proteolysis of beta-galactosidase fusion proteins by trypsin treatment of purified inclusion bodies. A cascade digestion process similar to that occurring in vivo has been observed in the insoluble fraction of the digestion reaction. This suggests that major protease target sites are not either lost or newly generated by protein precipitation and that the digestion occurs in situ probably on solvent-exposed surfaces of inclusion bodies. In addition, the sequence of the proteolytic attack is influenced by protein determinants other than amino acid sequence, the early digestion steps having a dramatic influence on the further cleavage susceptibility of the intermediate degradation fragments. These observations indicate unexpected conformational changes of inclusion body proteins during their site-limited digestion, that could promote protein release from aggregates, thus partially accounting for the plasticity of in vivo protein precipitation and solubilization in bacteria.  相似文献   

2.
Attenuation of green fluorescent protein half-life in mammalian cells   总被引:13,自引:0,他引:13  
The half-life of the green fluorescent protein (GFP) was determined biochemically in cultured mouse LA-9 cells. The wild-type protein was found to be stable with a half-life of approximately 26 h, but could be destabilized by the addition of putative proteolytic signal sequences derived from proteins with shorter half-lives. A C-terminal fusion of a PEST sequence from the mouse ornithine decarboxylase gene reduced the half-life to 9.8 h, resulting in a GFP variant suitable for the study of dynamic cellular processes. In an N-terminal fusion containing the mouse cyclin B1 destruction box, it was reduced to 5.8 h, with most degradation taking place at metaphase. The combination of both sequences produced a similar GFP half-life of 5.5 h. Thus, the stability of this marker protein can be controlled in predetermined ways by addition of the appropriate proteolytic signals.  相似文献   

3.
Kinetics of pH-dependent fusion between influenza virus and liposomes   总被引:10,自引:0,他引:10  
The pH-dependent fusion between influenza virus and liposomes (large unilamellar vesicles) has been investigated as a model for the fusion step in the infectious entry of the virus into cells. Fusion was monitored continuously, with a fluorescence assay based on resonance energy transfer (RET) [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which allows an accurate quantitation of the fusion process. Evidence is presented indicating that the dilution of the RET probes from the liposomal bilayer into the viral membrane is not due to transfer of individual lipid molecules. The initial rate and final extent of the fusion reaction increase dramatically with decreasing pH, fusion being virtually complete within 1 min at pH 4.5-5.0. From experiments in which the ratio of virus to liposomes was varied, it is concluded that virus-liposome fusion products continue to fuse with liposomes, but not with virus. Fusion is most efficient with liposomes consisting of negatively charged phospholipids, while phosphatidylcholine and sphingomyelin are inhibitory. The reaction is completely blocked by an antiserum against the virus and inhibited by pretreatment of the virus with trypsin. The effect of proteolytic pretreatment at pH 7.4 is enhanced after preincubation of the virus at pH 5.0, consistent with the occurrence of a low pH induced, irreversible, conformational change in the viral fusion protein, the hemagglutinin (HA), exposing trypsin cleavage sites. When, after initiation of the fusion reaction at pH 5.0, the pH is readjusted to neutral, the process is arrested instantaneously, indicating that the low pH induced conformational change in the HA protein, in itself, is not sufficient to trigger fusion activity.  相似文献   

4.
Pager CT  Dutch RE 《Journal of virology》2005,79(20):12714-12720
Proteolytic processing of paramyxovirus fusion (F) proteins is essential for the generation of a mature and fusogenic form of the F protein. Although many paramyxovirus F proteins are proteolytically processed by the cellular protease furin at a multibasic cleavage motif, cleavage of the newly emerged Hendra virus F protein occurs by a previously unidentified cellular protease following a single lysine at residue 109. We demonstrate here that the cellular protease cathepsin L is involved in converting the Hendra virus precursor F protein (F(0)) to the active F(1) + F(2) disulfide-linked heterodimer. To initially identify the class of protease involved in Hendra virus F protein cleavage, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F (known to be proteolytically processed by furin) were metabolically labeled and chased in the absence or presence of serine, cysteine, aspartyl, and metalloprotease inhibitors. Nonspecific and specific protease inhibitors known to decrease cathepsin activity inhibited proteolytic processing of Hendra virus F but had no effect on simian virus 5 F processing. We next designed shRNA oligonucleotides to cathepsin L which dramatically reduced cathepsin L protein expression and enzyme activity. Cathepsin L shRNA-expressing Vero cells transfected with pCAGGS-Hendra F demonstrated a nondetectable amount of cleavage of the Hendra virus F protein and significantly decreased membrane fusion activity. Additionally, we found that purified human cathepsin L processed immunopurified Hendra virus F(0) into F(1) and F(2) fragments. These studies introduce a novel mechanism for primary proteolytic processing of viral glycoproteins and also suggest a previously unreported biological role for cathepsin L.  相似文献   

5.
Proteolytic priming is a common method of controlling the activation of membrane fusion mediated by viral glycoproteins. The severe acute respiratory syndrome coronavirus spike protein (SARS-CoV S) can be primed by a variety of host cell proteases, with proteolytic cleavage occurring both as the S1/S2 boundary and adjacent to a fusion peptide in the S2 domain. Here, we studied the priming of SARS-CoV S by elastase and show an important role for residue Thr795 in the S2 domain. A series of alanine mutants were generated in the vicinity of the S2 cleavage site, with the goal of examining elastase-mediated cleavage within S2. Both proteolytic cleavage and fusion activation were modulated by altering the cleavage site position. We propose a novel mechanism whereby SARS-CoV fusion protein function can be controlled by spatial regulation of the proteolytic priming site, with important implications for viral pathogenesis.  相似文献   

6.
Sendai virus envelopes devoid of hemagglutinin-neuraminidase but containing the fusion protein (F-virosomes) were prepared. F-virosomes exhibited discernible serine protease activity at neutral pH. Electrophoretic analysis of the protein profile of the F-virosomes under nonreducing conditions, by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, led to the identification of a previously unknown glycoprotein with a relative molecular weight of 45,000 (45K protein) associated with the F protein. The identity of the 45K protein, as distinct from F protein, was established by Western blot analysis with F- and 45K-specific antibodies. This 45K protein forms a nexus with the F protein through noncovalent hydrophobic interactions, as proved by its sensitivity to urea treatment, and it is essential for the proteolytic activity of the F-virosomes as well as for the fusion of the viral envelope with host cell membrane. N-terminal sequence analysis (first 11 amino acids) of this protein showed strong homology (> 90%) to flavivirus NS3 serine proteases but no similarity to any of the Sendai viral proteins. On the basis of the N-terminal sequence, oligonucleotides were designed corresponding to the sense and antisense DNA sequences. Dot blot hybridization and primer extension with these oligonucleotides with the viral and the host genome confirmed the host origin of this protein. Further, the limited proteolytic digestion of the target membrane resulted in significant inhibition of viral fusion with it. On the basis of these results, we postulate a model for the molecular mechanism of F protein-induced membrane fusion, which may provide a rationale for other paramyxoviruses.  相似文献   

7.
New vectors for high level expression of recombinant proteins in bacteria.   总被引:26,自引:0,他引:26  
A system has been developed for synthesis and rapid purification of recombinant polypeptides expressed in frame with glutathione S-transferase (D. B. Smith and K. S. Johnson, 1988, Gene 67, 31-40). Expressed fusion proteins are purified from bacterial extracts by glutathione-agarose affinity chromatography. A thrombin protease cleavage site allowed for proteolysis of the fusion protein. We reported the construction of the vector pGEX-KG (K. Guan and J. E. Dixon, 1991, Anal. Biochem. 192, 262-267) which has a glycine-rich "kinker" immediately after the thrombin cleavage site. This kinker dramatically improved the thrombin cleavage efficiency of several fusion proteins. One potential drawback of expressing proteins in this vector is that, following proteolytic cleavage, unrelated amino acids from the vector remain at the amino terminus of the released protein. These extensions could affect enzymatic activity or protein structure. We have constructed two new vectors, pGEX-KT and pGEX-KN, which have the glycine kinker placed N-terminal to the thrombin cleavage site in order to minimize the unrelated amino acids associated with the cleaved protein. The change in location of the kinker had no effect on the increased thrombin cleavage efficiency. A strategy combining the kinker in the vector pGEX-KN with polymerase chain reaction has also been developed to express fusion proteins which when cleaved with thrombin released a protein having no amino terminal extensions of any kind.  相似文献   

8.
The v-sis oncogene of simian sarcoma virus encodes a protein which is homologous to the human platelet-derived growth factor B-chain. The v-sis protein undergoes a series of processing steps including dimer formation and proteolytic digestion to generate several molecular sizes of the protein. Two of these v-sis proteins were expressed alone or as polyhedrin-sis fusion proteins using the Bombyx mori nuclear polyhedrosis virus vector. The polyhedrin-sis fusion proteins contained a collagenase-sensitive site at the junction. The expression levels of the fusion proteins whose polyhedrin portions consisted of only 8 amino-terminal amino acids were 3-4 times higher than those of non-fusion proteins. One of these fusion proteins was expressed in silkworm larvae and the v-sis protein was isolated from the fusion protein by collagenolysis followed by chromatography. Because the purified v-sis protein exhibited the same molecular size on SDS-polyacrylamide gels under reducing and non-reducing conditions, it was concluded to be monomeric in structure. It possessed chemotactic activity but lacked mitogenic activity. In addition, a small amount (approximately 1%) of monomeric v-sis protein was converted in vitro to the mitogenically active v-sis protein, which could be a homo-dimer.  相似文献   

9.
In the late endocytic pathway, it has been proposed that endocytosed macromolecules are delivered to a proteolytic environment by 'kiss-and-run' events or direct fusion between late endosomes and lysosomes. To test whether the fusion hypothesis accounts for delivery to lysosomes in living cells, we have used confocal microscopy to examine content mixing between lysosomes loaded with rhodamine-dextran and endosomes subsequently loaded with Oregon-Green-dextran. Both kissing and explosive fusion events were recorded. Data from cell-free content-mixing assays have suggested that fusion is initiated by tethering, which leads to formation of a trans-SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein complex and then release of lumenal Ca(2+), followed by membrane bilayer fusion. We have shown that the R-SNARE (arginine-containing SNARE) protein VAMP (vesicle-associated membrane protein) 7 is necessary for heterotypic fusion between late endosomes and lysosomes, whereas a different R-SNARE, VAMP 8 is required for homotypic fusion of late endosomes. After fusion of lysosomes with late endosomes, lysosomes are re-formed from the resultant hybrid organelles, a process requiring condensation of content and the removal/recycling of some membrane proteins.  相似文献   

10.
We have shown previously by electron microscopy that the purified glutathione S-transferase (GST)-Huntington's disease (HD) exon 1 fusion protein with 51 glutamine residues (GST-HD51) is an oligomer, and that site-specific proteolytic cleavage of this fusion protein results in the formation of insoluble more highly ordered protein aggregates with a fibrillar or ribbon-like morphology (E. Scherzinger et al. (1997) Cell 90, 549-558). Here we report that a truncated GST HD exon 1 fusion protein with 51 glutamine residues, which lacks the proline-rich region C-terminal to the polyglutamine (polyQ) tract (GST-HD51 delta P) self-aggregates into high-molecular-mass protein aggregates without prior proteolytic cleavage. Electron micrographs of these protein aggregates revealed thread-like fibrils with a uniform diameter of ca. 25 nm. In contrast, proteolytic cleavage of GST-HD51 delta P resulted in the formation of numerous clusters of high-molecular-mass fibrils with a different, ribbon-like morphology. These structures were reminiscent of prion rods and beta-amyloid fibrils in Alzheimer's disease. In agreement with our previous results with full-length GST-HD exon 1, the truncated fusion proteins GST-HD20 delta P and GST-HD30 delta P did not show any tendency to form more highly ordered structures, either with or without protease treatment.  相似文献   

11.
Atlantic cod trypsin I is a cold-adapted proteolytic enzyme exhibiting approximately 20 times higher catalytic efficiency (kcat/KM) than its mesophilic bovine counterpart for the simple amide substrate BAPNA. In general, cold-adapted proteolytic enzymes are sensitive to autolytic degradation, thermal inactivation as well as molecular aggregation, even at temperatures as low as 18-25 degrees C which may explain the problems observed with their expression, activation, and purification. Prior to the data presented here, there have been no reports in the literature on the expression of psychrophilic or cold-adapted proteolytic enzymes from fish. Nevertheless, numerous cold-adapted proteolytic microbial enzymes have been successfully expressed in bacteria and yeast. This report describes successful expression, activation, and purification of the recombinant cod trypsin I in the His-Patch ThioFusion Escherichia coli expression system. The E. coli pThioHis expression vector used in the study enabled the formation of a fusion protein between a highly soluble fraction of HP-thioredoxin contained in the vector and the N-terminal end of the precursor form of cod trypsin I. The HP-thioredoxin part of the fusion protein binds to a metal-chelating ProBond column, which facilitated its purification. The cod trypsin I part of the purified fusion protein was released by proteolytic cleavage, resulting in concomitant activation of the recombinant enzyme. The recombinant cod trypsin I was purified to homogeneity on a trypsin-specific benzamidine affinity column. The identity of the recombinant enzyme was demonstrated by electrophoresis and chromatography.  相似文献   

12.
The mammalian mitochondrial inner membrane fusion protein OPA1 is controlled by complex patterns of alternative splicing and proteolysis. A subset of OPA1 isoforms is constitutively cleaved by YME1L. Other isoforms are not cleaved by YME1L, but they are cleaved when mitochondria lose membrane potential or adenosine triphosphate. In this study, we show that this inducible cleavage is mediated by a zinc metalloprotease called OMA1. We find that OMA1 small interfering RNA inhibits inducible cleavage, helps retain fusion competence, and slows the onset of apoptosis, showing that OMA1 controls OPA1 cleavage and function. We also find that OMA1 is normally cleaved from 60 to 40 kD by another as of yet unidentified protease. Loss of membrane potential causes 60-kD protein to accumulate, suggesting that OMA1 is attenuated by proteolytic degradation. We conclude that a proteolytic cascade controls OPA1. Inducible cleavage provides a mechanism for quality control because proteolytic inactivation of OPA1 promotes selective removal of defective mitochondrial fragments by preventing their fusion with the mitochondrial network.  相似文献   

13.
In the affinity purification of recombinant fusion proteins, the rate-limiting step is usually the efficient proteolytic cleavage and removal of the affinity tail and the protease from the purified recombinant protein. We have developed a rapid, convenient, and efficient method of affinity purification that can overcome this limitation. In one example of the method, the protease 3C from a picornavirus (3Cpro), which cleaves specific sequences containing a minimum of 6-7 amino acids, has been expressed as a fusion with glutathione S-transferase. The resultant recombinant "fusion protease" cleaves fusion proteins bearing (from the amino-terminus) the same affinity tail as the fusion protease, a 3Cpro cleavage recognition site, and the recombinant protein of interest. The recombinant protein is purified in a single chromatographic step, which removes both the affinity tail and the fusion protease. The advantages over existing methods include much improved specificity of proteolytic cleavage, complete removal of the protease and the affinity tail in one step, and the option of adding any desired amount of fusion protease to ensure efficient cleavage. The potential flexibility of the method is shown by the use of various affinity tails and alternative fusion proteases.  相似文献   

14.
A novel gene fusion system to express and purify small recombinant proteins in Escherichia coli has been constructed. The concept allows for affinity purification of soluble gene products by sequential albumin- and Zn2(+)-affinity chromatography. The dual-affinity system is well suited for expression of unstable proteins as only full-length protein is obtained after purification and proteins gain proteolytic stability in the fusion protein. Here we show that the dual-affinity approach can be used for the expression of various unstable derivatives of a single IgG-binding domain based on staphylococcal protein A. Analysis of the proteolytic stabilities and the IgG-binding properties of the different mutant proteins suggest that the model for the structure of an IgG-binding domain must be re-evaluated.  相似文献   

15.
An E. coli vector system was constructed which allows the expression of fusion genes via a l-rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.  相似文献   

16.
The precursor protein p62 of the prototype alphavirus Semliki Forest virus (SFV) undergoes during transport to the cell surface a proteolytic cleavage to form the mature envelope glycoprotein E2. To investigate the biological significance of this cleavage event, single amino acid substitutions were introduced at the cleavages site through mutagenesis of cDNA corresponding to the structural region of the SFV genome. The phenotypes of the cleavage site mutants were studied in BHK cells by using recombinant vaccinia virus vectors. Nonconservative substitutions completely abolished p62 cleavage. Uncleaved p62 was transported with normal kinetics to the cell surface, where it became accessible to low concentrations of exogenous trypsin. The proteolytic cleavage of envelope glycoprotein precursors has been shown to activate the membrane fusion potential of viral spikes in several virus families. Here we demonstrate that the fusion function of the SFV spike is activated by the cleavage of p62. Cleavage-deficient p62 expressed at the cell surface did not function in low-pH-triggered (pH 5.5) cell-cell membrane fusion; however, cleavage of the mutated p62 with exogenous trypsin restored the fusion function. We discuss a model for SFV assembly and fusion where p62 cleavage plays a crucial role in the stability of the multimeric association of the viral envelope glycoproteins.  相似文献   

17.
We report for the first time that the C-terminal region of hG-CSF suffers from proteolytic degradation when human granulocyte colony-stimulating factor (hG-CSF) is directly expressed in Escherichia coli BL21(DE3). It is believed that the rapid proteolysis occurs at the C-terminus of hG-CSF that is very easily exposed to E. coli protease(s) during a short period following protein synthesis and prior to completion of the formation of the inclusion body. The recombinant hG-CSF that is expressed with an N-terminal fusion partner is effectively protected from the proteolysis. It seems that since the N-terminus of hG-CSF is located very close to the C-terminus, the presence of the N-terminal fusion partner masks the C-terminal region of hG-CSF and protects it from proteolytic degradation by E. coli protease(s). Furthermore, the solubility of hG-CSF markedly increased in E. coli cytoplasm when a stress-responsive and aggregation-resistant protein, i.e. aspartate carbamoyl-transferase catalytic chain (PyrB) was used as a novel N-terminal fusion partner proteins.  相似文献   

18.
A novel member of the EGF-TM7 family, mEMR4, was identified and characterized. The full-length mouse EMR4 cDNA encodes a predicted 689-amino acid protein containing two epidermal growth factor (EGF)-like modules, a mucin-like spacer domain, and a seven-transmembrane domain with a cytoplasmic tail. Genetic mapping established that mEMR4 is localized in the distal region of mouse chromosome 17 in close proximity to another EGF-TM7 gene, F4/80 (Emr1). Similar to F4/80, mEMR4 is predominantly expressed on resident macrophages. However, a much lower expression level was also detected in thioglycollate-elicited peritoneal neutrophils and bone marrow-derived dendritic cells. The expression of mEMR4 is up-regulated following macrophage activation in Biogel and thioglycollate-elicited peritoneal macrophages. Similarly, mEMR4 is over-expressed in TNF-alpha-treated resident peritoneal macrophages, whereas interleukin-4 and -10 dramatically reduce the expression. mEMR4 was found to undergo proteolytic processing within the extracellular stalk region resulting in two protein subunits associated noncovalently as a heterodimer. The proteolytic cleavage site was identified by N-terminal amino acid sequencing and located at the conserved GPCR (G protein-coupled receptor) proteolytic site in the extracellular region. Using multivalent biotinylated mEMR4-mFc fusion proteins as a probe, a putative cell surface ligand was identified on a B lymphoma cell line, A20, in a cell-binding assay. The mEMR4-ligand interaction is Ca2+-independent and is mediated predominantly by the second EGF-like module. mEMR4 is the first EGF-TM7 receptor known to mediate the cellular interaction between myeloid cells and B cells.  相似文献   

19.
L Plamann  A Kuspa    D Kaiser 《Journal of bacteriology》1992,174(10):3311-3318
  相似文献   

20.
抗人纤维蛋白单链抗体-低分子质量尿激酶(Ⅱn-UK)融合蛋白,兼有单链抗体对纤维蛋白的亲和性和尿激酶的溶栓活性,有望开发成为新型导向溶栓药物.但基于通用连接肽(G4S)3的Ⅱn-linker-UK融合蛋白在CHO细胞中表达时出现明显的降解.为了解决此问题,利用分子生物学方法,对Hn-UK融合蛋白进行了分子改造,包括置换连接肽,改变两个半分子(moiety)的相对位置,以及对连接肽附近明确的蛋白酶位点进行突变等方法,并分别研究了改造后的11种Ⅱn-1inker-UK或UK-linker-Ⅱn突变体在CHO细胞中分泌性表达时的稳定性,最终筛选到一种抗降解的突变体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号