首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Early steps in steroidogenesis: intracellular cholesterol trafficking   总被引:1,自引:0,他引:1  
  相似文献   

3.
The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Iα (PKA-RIα) and the PKA-RIα- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein–protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.  相似文献   

4.
StarD4 protein is a member of the StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins that includes StarD5 and StarD6, proteins whose functions remain poorly defined. The objective of this study was to isolate and characterize StarD4's sterol binding and to determine in a hepatocyte culture model its sterol transport capabilities. Utilizing purified full-length StarD4, in vitro binding assays demonstrated a concentration-dependent binding of [(14)C]cholesterol by StarD4 similar to that of the cholesterol binding START domain proteins StarD1 and StarD5. Other tested sterols showed no detectable binding to StarD4, except for 7alpha-hydroxycholesterol, for which StarD4 demonstrated weak binding on lipid protein overlay assays. Subsequently, an isolated mouse hepatocyte model was used to study the ability of StarD4 to bind/mobilize/distribute cellular cholesterol. Increased expression of StarD4 in primary mouse hepatocytes led to a marked increase in the intracellular cholesteryl ester concentration and in the rates of bile acid synthesis. The ability and specificity of StarD4 to bind cholesterol and, as a function of its level of expression, to direct endogenous cellular cholesterol suggest that StarD4 plays an important role as a directional cholesterol transporter in the maintenance of cellular cholesterol homeostasis.  相似文献   

5.
Recently identified StarD5 belongs to the StarD4 subfamily, a subfamily of steroidogenic acute regulatory related lipid transfer (START) domain proteins that includes StarD4 and StarD6, proteins whose functions remain unknown. The objective of this study was to confirm StarD5's protein localization and sterol binding capabilities as measures to pursue function. Using rabbit polyclonal antibody against newly purified human histidine-tagged/StarD5 protein, StarD5 was detected in human liver. In parallel studies, increased expression of StarD5 in primary hepatocytes led to a marked increase in microsomal free cholesterol. Cell fractionation studies demonstrated StarD5 protein in liver cytosolic fractions only, suggesting StarD5 as a directional cytosolic sterol carrier. Supportive in vitro binding assays demonstrated a concentration-dependent binding of cholesterol by StarD5 similar to that of the cholesterol binding START domain protein StarD1. In contrast to selective cholesterol binding by StarD1, StarD5 bound the potent regulatory oxysterol, 25-hydroxycholesterol, in a concentration-dependent manner. StarD5 binding appeared selective for cholesterol and 25-hydroxycholesterol, as no binding was observed for other tested sterols. The ability of StarD5 to bind not only cholesterol but also 25-hydroxycholesterol, a potent inflammatory mediator and regulatory oxysterol, raises basic fundamental questions about StarD5's role in the maintenance of cellular cholesterol homeostasis.  相似文献   

6.
The steroidogenic acute regulatory (StAR)-related lipid transfer (START) domains are found in a wide range of proteins involved in intracellular trafficking of cholesterol and other lipids. Among the START proteins are the StAR protein itself (STARD1) and the closely related MLN64 protein (STARD3), which both function in cholesterol movement. We compared the cholesterol-binding properties of these two START domain proteins. Cholesterol stabilized STARD3-START against trypsin-catalyzed degradation, whereas cholesterol had no protective effect on STARD1-START. [(3)H]Azocholestanol predominantly labeled a 6.2 kDa fragment of STARD1-START comprising amino acids 83-140, which contains residues proposed to interact with cholesterol in a hydrophobic cavity. Photoaffinity labeling studies suggest that cholesterol preferentially interacts with one side wall of this cavity. In contrast, [(3)H]azocholestanol was distributed more or less equally among the polypeptides of STARD3-START. Overall, our results provide evidence for differential cholesterol binding of the two most closely related START domain proteins STARD1 and STARD3.  相似文献   

7.
Lipid transport proteins at membrane contact sites, where two organelles are closely apposed, play key roles in trafficking lipids between cellular compartments while distinct membrane compositions for each organelle are maintained. Understanding the mechanisms underlying non‐vesicular lipid trafficking requires characterization of the lipid transporters residing at contact sites. Here, we show that the mammalian proteins in the lipid transfer proteins anchored at a membrane contact site (LAM) family, called GRAMD1a‐c, transfer sterols with similar efficiency as the yeast orthologues, which have known roles in sterol transport. Moreover, we have determined the structure of a lipid transfer domain of the yeast LAM protein Ysp2p, both in its apo‐bound and sterol‐bound forms, at 2.0 Å resolution. It folds into a truncated version of the steroidogenic acute regulatory protein‐related lipid transfer (StART) domain, resembling a lidded cup in overall shape. Ergosterol binds within the cup, with its 3‐hydroxy group interacting with protein indirectly via a water network at the cup bottom. This ligand binding mode likely is conserved for the other LAM proteins and for StART domains transferring sterols.  相似文献   

8.
Steroidogenic acute regulatory (StAR)—related lipid transfer proteins possess a START (steroidogenic acute regulatory-related lipid transfer) domain. START domains are conserved protein modules involved in the non-vesicular intracellular transport of lipids and cholesterol in mammals. Fifteen mammalian proteins, divided in five subfamilies, are reported to possess a START domain. Members of the STARD4 subfamily, i.e. STARD4, 5 and 6 are essentially single START domains and are thought to be involved in the intracellular transport of cholesterol. No structure of a cholesterol-bound START domain from this family has been resolved yet. The determination of the structure of such a complex would contribute to a better understanding of the mechanism of ligand binding and transport by START domains, two unresolved aspects of their structural biology. In this context, we have undertaken the structure determination of a ligand-bound form of STARD5 by NMR. Here, we report the 1H, 13C and 15N backbone resonance assignments of the ligand-free STARD5.  相似文献   

9.
Cholesterol is the starting point for biosynthesis of steroids, oxysterols and bile acids, and is also an essential component of cellular membranes. The mechanisms directing the intracellular trafficking of this insoluble molecule have received attention through the discovery of the steroidogenic acute regulatory protein (StAR) and related proteins containing StAR-related lipid transfer domains. Much of our understanding of the physiology of StAR derives from studies of congenital lipoid adrenal hyperplasia, which is caused by StAR mutations. Multiple lines of evidence show that StAR moves cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. The precise mechanism by which StAR's action on the outer mitochondrial membrane stimulates the flow of cholesterol to the inner membrane remains unclear. When StAR interacts with protonated phospholipid head groups on the outer mitochondrial membrane, it undergoes a conformational change (molten globule transition) that opens and closes StAR's cholesterol-binding pocket; this conformational change is required for cholesterol binding, which is required for StAR activity. The action of StAR probably requires interaction with the peripheral benzodiazepine receptor.  相似文献   

10.
The present study was focused on the regulation of ecdysteroidogenesis in the Y-organ of Scylla serrata during molting cycle. A strong expression of molt-inhibiting hormone (MIH) and phosphorylation of ERK was predominantly observed in the postmolt and intermolt stages of Y-organs, whereas protein kinase C, steroidogenic acute regulatory protein (StAR) and cytochrome P450(scc) activity were exclusively seen in the premolt stages. Interestingly, inhibition of ERK phosphorylation by PD98059 in the early postmolt (A), middle postmolt (B) and intermolt (C) stages resulted in the prominent expression of PKC and StAR in the postmolt stages. This result indicates that phosphorylation of ERK is required for suppression of ecdysteroid biosynthesis with the involvement of protein kinase C, and StAR protein.  相似文献   

11.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   

12.
The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice.  相似文献   

13.
14.
The steroidogenic acute regulatory protein (StAR) is responsible for acute control of cholesterol transport across the mitochondrial membrane, however the mechanism of StAR-associated cholesterol transport is unknown and may involve the peripheral-type benzodiazepine receptor (PBR)/endozepine system. Several molecules of PBR may associate to form a channel through which cholesterol passes to the inner mitochondrial membrane, and endozepine is the natural ligand for PBR. Bioluminescence resonance energy transfer (BRET) was used to test StAR/PBR/endozepine interactions, PBR aggregation, and the effect of second messengers on interactions. There was no evidence of StAR/PBR, StAR/endozepine, or PBR/endozepine interactions. The StAR and PBR fusion proteins were trafficking to the mitochondria as expected, but the endozepine fusion protein was not localized to the mitochondria indicating that it was not biologically active. Data were obtained indicating that PBR forms aggregates in the mitochondrial membrane. Energy transfer between PBR fusion proteins was dose and time dependent, but there was no effect induced by PK11195 ligand binding or pharmacologic activation of PKA or PKC second messenger pathways. It appears that PBR aggregates in the mitochondrial membrane, however there was no evidence that PBR aggregation is regulated in the acute control of steroidogenesis, or that PBR and StAR interact.  相似文献   

15.
16.
Lai YT  Cheng CS  Liu YN  Liu YJ  Lyu PC 《Proteins》2008,72(4):1189-1198
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding.  相似文献   

17.
The PDZ domains, a large family of peptide recognition proteins, bind to the C‐terminal segment of membrane ion channels and receptors thereby mediating their localization. The peptide binding process is not known in detail and seems to differ among different PDZ domains. For the third PDZ domain of the synaptic protein PSD‐95 (PDZ3), a lock‐and‐key mechanism was postulated on the basis of the almost perfect overlap of the crystal structures in the presence and absence of its peptide ligand. Here, peptide binding to PDZ3 is investigated by explicit solvent molecular dynamics (MD) simulations (for a total of 1.3 μs) and the cut‐based free energy profile method for determining free energy barriers and basins. The free energy landscape of apo PDZ3 indicates that there are multiple basins within the native state. These basins differ by the relative orientation of the α2 helix and β2 strand, the two secondary structure elements that make up the peptide binding site. Only the structure with the smallest aperture of the binding site is populated in the MD simulations of the complex whose analysis reveals that the peptide ligand binds to PDZ3 by selecting one of three conformations. Thus, the dynamical information obtained by the atomistic simulations increment the static, that is, partial, picture of the PDZ3 binding mechanism based on the X‐ray crystallography data. Importantly, the simulation results show for the first time that conformational selection is a possible mechanism of peptide binding by PDZ domains in general. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Endothelial cells may play a potential role in cholesterol efflux from peripheral tissues to liver. Cholesterol efflux from cells is essential for activation of the reverse cholesterol transport pathway and cardiovascular health. One of the cholesterol transporters is steroidogenic acute regulatory protein (StAR) which promotes intramitochondrial delivery of cholesterol to the cholesterol side-chain cleavage system. The aim of the present study was to determine the effects of a niacin–chromium complex on aortas of hyperlipidemic rats and on the cholesterol efflux from aorta endothelial cells by examination under light and transmission electron microscopes and evaluating the StAR immunoreactivity, respectively. Aorta lipid peroxidation (LPO) and glutathione (GSH) levels were determined by spectrophotometric methods. After treating hyperlipidemic animals with the complex, the StAR immunoreactivity in endothelial cells increased to achieve cholesterol homeostasis and efflux. Combined treatment with niacin and chromium resulted in an inhibition in the mast cell secretion and a decrease in lipid vacuole size in unilocular adipose tissue surrounding aorta, as well as in a decrease in morphological degenerations observing in aorta of hyperlipidemic rats. Aorta LPO levels increased and GSH levels decreased in the hyperlipidemic group, whereas treatment with niacin and chromium reversed these effects. In conclusion, this study reveals that combined treatment with niacin and chromium prevents the morphological and biochemical changes observed in thoracic aorta of hyperlipidemic rats, and may regulate effectively cardiovascular diseases inducing an increase in StAR levels on endothelial cells.  相似文献   

19.
Cholesterol is a vital component of cellular membranes, and is the substrate for biosynthesis of steroids, oxysterols and bile acids. The mechanisms directing the intracellular trafficking of this nearly insoluble molecule have received increased attention through the discovery of the steroidogenic acute regulatory protein (StAR) and similar proteins containing StAR-related lipid transfer (START) domains. StAR can transfer cholesterol between synthetic liposomes in vitro, an activity which appears to correspond to the trans-cytoplasmic transport of cholesterol to mitochondria. However, trans-cytoplasmic cholesterol transport in vivo appears to involve the recently-described protein StarD4, which is expressed in most cells. Steroidogenic cells must also move large amounts of cholesterol from the outer mitochondrial membrane to the first steroidogenic enzyme, which lies on the matrix side of the inner membrane; this action requires StAR. Congenital lipoid adrenal hyperplasia, a rare and severe disorder of human steroidogenesis, results from mutations in StAR, providing a StAR knockout of nature that has provided key insights into its activity. Cell biology experiments show that StAR moves large amounts of cholesterol from the outer to inner mitochondrial membrane, but acts exclusively on the outer membrane. Biophysical data show that only the carboxyl-terminal alpha-helix of StAR interacts with the outer membrane. Spectroscopic data and molecular dynamics simulations show that StAR's interactions with protonated phospholipid head groups on the outer mitochondrial membrane induce a conformational change (molten globule transition) needed for StAR's activity. StAR appears to act in concert with the peripheral benzodiazepine receptor, but the precise itinerary of a cholesterol molecule entering the mitochondrion remains unclear.  相似文献   

20.
Brain sex steroids are derived from both peripheral (primarily gonadal) and local (neurosteroids) sources and are crucial for neurogenesis, neural differentiation and neural function. The mechanism(s) regulating the production of neurosteroids is not understood. To determine whether hypothalamic‐pituitary‐gonadal axis components previously detected in the extra‐hypothalamic brain comprise a feedback loop to regulate neuro‐sex steroid (NSS) production, we assessed dynamic changes in expression patterns of steroidogenic acute regulatory (StAR) protein, a key regulator of steroidogenesis, and key hypothalamic‐pituitary‐gonadal endocrine receptors, by modulating peripheral sex hormone levels in female mice. Ovariectomy (OVX; high serum gonadotropins, low serum sex steroids) had a differential effect on StAR protein levels in the extrahypothalamic brain; increasing the 30‐ and 32‐kDa variants but decreasing the 37‐kDa variant and is indicative of cholesterol transport into mitochondria for steroidogenesis. Treatment of OVX animals with E2, P4, or E2 + P4 for 3 days, which decreases OVX‐induced increases in GnRH/gonadotropin production, reversed this pattern. Suppression of gonadotropin levels in OVX mice using the GnRH agonist leuprolide acetate inhibited the processing of the 37‐kDa StAR protein into the 30‐kDa StAR protein, confirming that the differential processing of brain StAR protein is regulated by gonadotropins. OVX dramatically suppressed extra‐hypothalamic brain gonadotropin‐releasing hormone 1 receptor expression, and was further suppressed in E2‐ or P4‐treated OVX mice. Together, these data indicate the existence of endocrine and autocrine/paracrine feedback loops that regulate NSS synthesis. Further delineation of these feedback loops that regulate NSS production will aid in developing therapies to maintain brain sex steroid levels and cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号