首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm-specific phospholipase Czeta (PLCzeta) is known to induce intracellular Ca(2+) oscillations and subsequent early embryonic development when expressed in mouse eggs by injection of RNA encoding PLCzeta (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development 129, 3533-3544). The present study addressed characteristics of purified mouse PLCzeta protein that was synthesized using the baculovirus/Sf9 cell expression system. Microinjection of recombinant PLCzeta protein into mouse eggs induced serial Ca(2+) spikes quite similar to those produced by the injection of sperm extract, probably because of repetitive Ca(2+) release from the endoplasmic reticulum caused by continuously produced inositol 1,4,5-trisphosphate. Recombinant PLCdelta1 also induced Ca(2+) oscillations, but a 20-fold higher concentration was required compared with PLCzeta. In the enzymatic assay of phosphatidylinositol 4,5-bisphosphate hydrolyzing activity in vitro at various calcium ion concentrations ([Ca(2+)]), PLCzeta exhibited a significant activity at [Ca(2+)] as low as 10 nm and had 70% maximal activity at 100 nm [Ca(2+)] that is usually the basal intracellular calcium ion concentration level of cells. On the other hand, the activity of PLCdelta1 increased at a [Ca(2+)] between 1 and 30 microm. EC(50) was 52 nm for PLCzeta and 5.7 microm for PLCdelta1. Thus, PLCzeta has an approximately 100-fold higher Ca(2+) sensitivity than PLCdelta1. The ability of purified PLCzeta protein to induce Ca(2+) oscillations qualifies PLCzeta as a proper candidate of the mammalian egg-activating sperm factor. Furthermore, such a high Ca(2+) sensitivity of PLC activity as PLCzeta that can be active in cells at the resting state is thought to be an appropriate characteristic of the sperm factor, which is introduced into the ooplasm upon sperm-egg fusion, triggers Ca(2+) release first, and maintains Ca(2+) oscillations.  相似文献   

2.
Sperm-specific phospholipase C-zeta (PLCzeta) induces Ca2+ oscillations and egg activation when injected into mouse eggs. PLCzeta has such a high Ca2+ sensitivity of PLC activity that the enzyme can be active in resting cells at approximately 100 nM Ca2+, suitable for a putative sperm factor to be introduced into the egg at fertilization (Kouchi, Z., Fukami, K., Shikano, T., Oda, S., Nakamura, Y., Takenawa, T., and Miyazaki, S. (2004) J. Biol. Chem. 279, 10408-10412). In the present structure-function analysis, deletion of EF1 and EF2 of the N-terminal four EF-hand domains caused marked reduction of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-hydrolyzing activity in vitro and loss of Ca2+ oscillation-inducing activity in mouse eggs after injection of RNA encoding the mutant. However, deletion of EF1 and EF2 or mutation of EF1 or EF2 at the x and z positions of the putative Ca2+-binding loop little affected the Ca2+ sensitivity of the PLC activity, whereas deletion of EF1 to EF3 caused 12-fold elevation of the EC50 of Ca2+ concentration. Thus, EF1 and EF2 are important for the PLCzeta activity, and EF3 is responsible for its high Ca2+ sensitivity. Deletion of four EF-hand domains or the C-terminal C2 domain caused complete loss of PLC activity, indicating that both regions are prerequisites for PLCzeta activity. Screening of interactions between the C2 domain and phosphoinositides revealed that C2 has substantial affinity to PI(3)P and, to the lesser extent, to PI(5)P but not to PI(4,5)P2 or acidic phospholipids. PI(3)P and PI(5)P reduced PLCzeta activity in vitro, suggesting that the interaction could play a role for negative regulation of PLCzeta.  相似文献   

3.
Sperm-specific phospholipase C-zeta (PLCzeta) causes intracellular Ca(2+) oscillations and thereby egg activation and is accumulated into the formed pronucleus (PN) when expressed in mouse eggs by injection of cRNA encoding PLCzeta, which consists of four EF-hand domains (EF1-EF4) in the N terminus, X and Y catalytic domains, and C-terminal C2 domain. Those activities were analyzed by expressing PLCzeta mutants tagged with fluorescent protein Venus by injection of cRNA into unfertilized eggs or 1-cell embryos after fertilization. Nuclear localization signal (NLS) existed at 374-381 in the X/Y linker region. Nuclear translocation was lost by replacement of Arg(376), Lys(377), Arg(378), Lys(379), or Lys(381) with glutamate, whereas Ca(2+) oscillations were conserved. Nuclear targeting was also absent for point mutation of Lys(299) and/or Lys(301) in the C terminus of X domain, or Trp(13), Phe(14), or Val(18) in the N terminus of EF1. Ca(2+) oscillation-inducing activity was lost by the former mutation and was remarkably inhibited by the latter. A short sequence 374-383 fused with Venus showed active translocation into the nucleus of COS-7 cells, but 296-309 or 1-19 did not. Despite the presence of these special regions, both activities were deprived by deletion of not only EF1 but also EF2-4 or C2 domain. Thus, PLCzeta is driven into the nucleus primarily by the aid of NLS and putative regulatory sites, but coordinated three-dimensional structure, possibly formed by a folding in the X/Y linker and close EF/C2 contact as in PLCdelta1, seems to be required not only for enzymatic activity but also for nuclear translocation ability.  相似文献   

4.
Intracellular Ca2+ oscillations in fertilized mammalian eggs, the key signal that stimulates egg activation and early embryonic development, are regulated by inositol 1,4,5-trisphosphate (IP3) signaling pathway. We investigated temporal changes in intracellular IP3 concentration ([IP3]i) in mouse eggs, using a fluorescent probe based on fluorescence resonance energy transfer between two green fluorescent protein variants, during Ca2+ oscillations induced by fertilization or expression of phospholipase Czeta (PLCzeta), an egg-activating sperm factor candidate. Fluorescence measurements suggested the elevation of [IP3]i in fertilized eggs, and the enhancement of PLCzeta-mediated IP3 production by cytoplasmic Ca2+ was observed during Ca2+ oscillations or in response to CaCl2 microinjection. The results supported the view that PLCzeta is the sperm factor to stimulate IP3 pathway, and suggested that high Ca2+ sensitivity of PLCzeta activity and positive feedback from released Ca2+ are important for triggering and maintaining Ca2+ oscillations.  相似文献   

5.
A sperm-specific phospholipase (PL) C, termed PLCzeta, is proposed to be the soluble sperm factor that induces Ca(2+) oscillations in mammalian eggs and, thus, initiates egg activation in vivo. We report that sperm from transgenic mice expressing short hairpin RNAs targeting PLCzeta mRNA have reduced amounts of PLCzeta protein. Sperm derived from these transgenic mice trigger patterns of Ca(2+) oscillations following fertilization in vitro that terminate prematurely. Consistent with the perturbation in patterns of Ca(2+) oscillations is the finding that mating of transgenic founder males to females results in lower rates of egg activation and no transgenic offspring. These data strongly suggest that PLCzeta is the physiological trigger of Ca(2+) oscillations required for activation of development.  相似文献   

6.
Phospholipase C (PLC) is a ubiquitous enzyme involved in the regulation of a variety of cellular processes. Its dependence on Ca2+ is well recognized, but it is not known how PLC activity is affected by physiological variations of the cytoplasmic Ca2+ concentration ([Ca2+](i)). Here, we applied evanescent wave microscopy to monitor PLC activity in parallel with [Ca2+](i) in individual insulin-secreting INS-1 cells using the phosphatidylinositol 4,5-bisphosphate- and inositol 1,4,5-trisphosphate-binding pleckstrin homology domain from PLCdelta(1) fused to green fluorescent protein (PH(PLCdelta1)-GFP) and the Ca2+ indicator fura red. In resting cells, PH(PLCdelta1)-GFP was located predominantly at the plasma membrane. Activation of PLC by muscarinic or purinergic receptor stimulation resulted in PH(PLCdelta1)-GFP translocation from the plasma membrane to the cytoplasm, detected as a decrease in evanescent wave-excited PH(PLCdelta1)-GFP fluorescence. Using this translocation as a measure of PLC activity, we found that depolarization by raising extracellular [K+] triggered activation of the enzyme. This effect could be attributed both to a rise of [Ca2+](i) and to depolarization per se, because some translocation persisted during depolarization in a Ca2+-deficient medium containing the Ca2+ chelator EGTA. Moreover, oscillations of [Ca2+](i) resulting from depolarization with Ca2+ influx evoked concentration-dependent periodic activation of PLC. We conclude that PLC activity is under tight dynamic control of [Ca2+](i). In insulin-secreting beta-cells, this mechanism provides a link between Ca2+ influx and release from intracellular stores that may be important in the regulation of insulin secretion.  相似文献   

7.
A cytosolic sperm protein(s), referred to as sperm factor (SF), is delivered into eggs by the sperm during mammalian fertilization to induce repetitive increases in the intracellular concentration of free Ca2+ ([Ca2+]i) that are referred to as [Ca2+]i oscillations. [Ca2+]i oscillations are essential for egg activation and early embryonic development. Recent evidence shows that the novel sperm-specific phospholipase C (PLC), PLCzeta, may be the long sought after [Ca2+]i oscillation-inducing SF. Here, we demonstrate the complete extraction of SF from porcine sperm and show that regardless of the method of extraction a single molecule/complex appears to be responsible for the [Ca2+]i oscillation-inducing activity of these extracts. Consistent with this notion, all sperm fractions that induced [Ca2+]i oscillations, including FPLC-purified fractions, exhibited high in vitro PLC activity at basal Ca2+ levels (0.1-5 microM), a hallmark of PLCzeta. Notably, we detected immunoreactive 72-kDa PLCzeta in an inactive fraction, and several fractions capable of inducing oscillations were devoid of 72-kDa PLCzeta. Nonetheless, in the latter fractions, proteolytic fragments, presumably corresponding to cleaved forms of PLCzeta, were detected by immunoblotting. Therefore, our findings corroborate the hypothesis that a sperm-specific PLC is the main component of the [Ca2+]i oscillation-inducing activity of sperm but provide evidence that the presence of 72-kDa PLCzeta does not precisely correspond with the Ca2+ releasing activity of porcine sperm fractions.  相似文献   

8.
The concentration of free Ca(2+) and the composition of nonsubstrate phospholipids profoundly affect the activity of phospholipase C delta1 (PLCdelta1). The rate of PLCdelta1 hydrolysis of phosphatidylinositol 4,5-bisphosphate was stimulated 20-fold by phosphatidylserine (PS), 4-fold by phosphatidic acid (PA), and not at all by phosphatidylethanolamine or phosphatidylcholine (PC). PS reduced the Ca(2+) concentration required for half-maximal activation of PLCdelta1 from 5.4 to 0.5 microM. In the presence of Ca(2+), PLCdelta1 specifically bound to PS/PC but not to PA/PC vesicles in a dose-dependent and saturable manner. Ca(2+) also bound to PLCdelta1 and required the presence of PS/PC vesicles but not PA/PC vesicles. The free Ca(2+) concentration required for half-maximal Ca(2+) binding was estimated to be 8 microM. Surface dilution kinetic analysis revealed that the K(m) was reduced 20-fold by the presence of 25 mol % PS, whereas V(max) and K(d) were unaffected. Deletion of amino acid residues 646-654 from the C2 domain of PLCdelta1 impaired Ca(2+) binding and reduced its stimulation and binding by PS. Taken together, the results suggest that the formation of an enzyme-Ca(2+)-PS ternary complex through the C2 domain increases the affinity for substrate and consequently leads to enzyme activation.  相似文献   

9.
10.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

11.
Mechanism of Ca2+ release at fertilization in mammals.   总被引:5,自引:0,他引:5  
At fertilization in mammals the sperm triggers a series of oscillations in intracellular Ca2+ within the egg. These Ca2+ oscillations activate the development of the egg into an embryo. It is not known how the sperm triggers these Ca2+ oscillations. There are currently three different theories for Ca2+ signaling in eggs at fertilization. One idea is that the sperm acts as a conduit for Ca2+ entry into the egg after membrane fusion. Another idea is that the sperm acts upon plasma membrane receptors to stimulate a phospholipase C (PLC) within the egg which generates inositol 1,4, 5-trisphosphate (InsP(3)). We present a third idea that the sperm causes Ca2+ release by introducing a soluble protein factor into the egg after gamete membrane fusion. In mammals this sperm factor is also referred to as an oscillogen because, after microinjection, the factor causes sustained Ca2+ oscillations in eggs. Our recent data in sea urchin egg homogenates and intact eggs suggests that this sperm factor has phospholipase C activity that leads to the generation of InsP(3). We then present a new version of the soluble sperm factor theory of signaling at fertilization. J. Exp. Zool. (Mol. Dev. Evol.) 285:267-275, 1999.  相似文献   

12.
Of the isoforms of plant phospholipase D (PLD) that have been cloned and characterized, PLDalpha requires millimolar levels of Ca(2+) for optimal activity, whereas PLDbeta is most active at micromolar concentrations of Ca(2+). Multiple amino acid sequence alignments suggest that PLDalpha and PLDbeta both contain a Ca(2+)-dependent phospholipid-binding C2 domain near their N termini. In the present study, we expressed and characterized the putative C2 domains of PLDalpha and PLDbeta, designated PLDalpha C2 and PLDbeta C2, by CD spectroscopy, isothermal titration calorimetry, and phospholipid binding assay. Both PLD C2 domains displayed CD spectra consistent with anticipated major beta-sheet structures but underwent spectral changes upon binding Ca(2+); the magnitude was larger for PLDbeta C2. These conformational changes, not shown by any of the previously characterized C2 domains of animal origin, occurred at micromolar Ca(2+) concentrations for PLDbeta C2 but at millimolar levels of the cation for PLDalpha C2. PLDbeta C2 exhibited three Ca(2+)-binding sites: one with a dissociation constant (K(d)) of 0.8 microm and the other two with a K(d) of 24 micrometer. In contrast, isothermal titration calorimetry data of PLDalpha C2 were consistent with 1-3 low affinity Ca(2+)-binding sites with K(d) in the range of 590-470 micrometer. The thermodynamics of Ca(2+) binding markedly differed for the two C2 domains. Likewise, PLDbeta C2 bound phosphatidylcholine (PC), the substrate of PLD, in the presence of submillimolar Ca(2+) concentrations, whereas PLDalpha C2 did so only in the presence of millimolar levels of the metal ion. Both C2 domains bound phosphatidylinoistol 4,5-bisphosphate, a regulator of PC hydrolysis by PLD. However, added Ca(2+) displaced the bound phosphatidylinoistol 4,5-bisphosphate. Ca(2+) and PC binding properties of PLDalpha C2 and PLDbeta C2 follow a trend similar to the Ca(2+) requirements of the whole enzymes, PLDalpha and PLDbeta, for PC hydrolysis. Taken together, the results suggest that the C2 domains of PLDalpha and PLDbeta have novel structural features and serve as handles by which Ca(2+) differentially regulates the activities of the isoforms.  相似文献   

13.
In smooth muscle myocytes, agonist-activated release of calcium ions (Ca2+) stored in the sarcoplasmic reticulum (SR) occurs via different but overlapping transduction pathways. Hence, to fully study how SR Ca2+ channels are activated, the simultaneous activation of different Ca2+ signals should be separated. In rat duodenum myocytes, we have previously characterized that acetylcholine (ACh) induces Ca2+ oscillations by binding to its M2 muscarinic receptor and activating the ryanodine receptor subtype 2. Here, we show that ACh simultaneously evokes a Ca2+ signal dependent on activation of inositol 1,4,5-trisphosphate (InsP3) receptor subtype 1. A pharmacologic approach, the use of antisense oligonucleotides directed against InsP3R1, and the expression of a specific biosensor derived from green-fluorescent protein coupled to the pleckstrin homology domain of phospholipase C, suggested that the InsP3R1-dependent Ca2+ signal is transient and due to a transient synthesis of InsP3 via M3 muscarinic receptor. Moreover, we suggest that both M2 and M3 signalling pathways are modulating phosphatidylinositol 4,5-bisphosphate and InsP3 concentration, thus describing closely interacting pathways activated by ACh in duodenum myocytes.  相似文献   

14.
Binding of mitogenic lectins to T lymphocytes results in elevated cytoplasmic Ca2+ concentrations ([Ca2+]i). This change in [Ca2+]i is thought to be essential for cellular proliferation. In addition, the lectins increase the conductance to K+ through voltage-sensitive channels. Based on the inhibitory effect of K+ channel blockers on lectin-induced mitogenesis, it has been suggested that Ca2+ could enter the cells through these activated K+ channels (Chandy, K. G., De Coursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984) J. Exp. Med. 160, 369-385; Chandy, K. G., De Coursey, T. E., Cahalan, M. D., and Gupta, S. (1985) J. Clin. Immunol. 5, 1-5). This hypothesis was tested experimentally by measuring the effect of activation or blockade of K+ channels on [Ca2+]i using quin-2 and indo-1 and by determining the effect of K+ channel blockers on lectin-induced proliferation. We found that: depolarization of the membrane, which is expected to open the K+ channels, failed to increase [Ca2+]i, K+ channel blockers such as tetraethylammonium and 4-aminopyridine had only a marginal effect on the lectin-induced increase in [Ca2+]i, and the inhibitory effect of K+ channel blockers on proliferation was found to be nonspecific, occurring also when proliferation was triggered by phorbol esters under conditions where [Ca2+]i is not elevated. It is concluded that the lectin-induced changes in [Ca2+]i are not mediated by the opening of voltage-gated K+ channels.  相似文献   

15.
Rabphilin-3A is a neuronal C2 domain tandem containing protein involved in vesicle trafficking. Both its C2 domains (C2A and C2B) are able to bind phosphatidylinositol 4,5-bisphosphate, a key player in the neurotransmitter release process. The rabphilin-3A C2A domain has previously been shown to bind inositol-1,4,5-trisphosphate (IP3; phosphatidylinositol 4,5-bisphosphate headgroup) in a Ca2+-dependent manner with a relatively high affinity (50 microm) in the presence of saturating concentrations of Ca2+. Moreover, IP3 and Ca2+ binding to the C2A domain mutually enhance each other. Here we present the Ca2+-bound solution structure of the C2A domain. Structural comparison with the previously published Ca2+-free crystal structure revealed that Ca2+ binding induces a conformational change of Ca2+ binding loop 3 (CBL3). Our IP3 binding studies as well as our IP3-C2A docking model show the active involvement of CBL3 in IP3 binding, suggesting that the conformational change on CBL3 upon Ca2+ binding enables the interaction with IP3 and vice versa, in line with a target-activated messenger affinity mechanism. Our data provide detailed structural insight into the functional properties of the rabphilin-3A C2A domain and reveal for the first time the structural determinants of a target-activated messenger affinity mechanism.  相似文献   

16.
A male infertility-linked human PLCζ (phospholipase Cζ) mutation introduced into mouse PLCζ completely abolishes both in vitro PIP(2) (phosphatidylinositol 4,5-bisphosphate) hydrolysis activity and the ability to trigger in vivo Ca2+ oscillations in mouse eggs. Wild-type PLCζ initiated a normal pattern of Ca2+ oscillations in eggs in the presence of 10-fold higher mutant PLCζ, suggesting that infertility is not mediated by a dominant-negative mechanism.  相似文献   

17.
Isolated rat hepatocytes were loaded with the Ca2+ indicator fura-2 to measure cytosolic free Ca2+ concentrations ([Ca2+]i) in individual cells by digital ratio imaging microscopy. Stimulation with 0.1 nM vasopressin, 0.5 microM phenylephrine, or 0.5 microM ATP caused repetitive spikes of high [Ca2+]i in a high percentage of cells, in agreement with Woods et al. (Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H. (1986) Nature 319, 600-602), but unlike the results of Monck et al. (Monck, J. R., Reynolds, E. E., Thomas, A. P., and Williamson, J. R. (1988) J. Biol. Chem. 263, 4569-4575). Reduction in extracellular [Ca2+] decreased the frequency but not the amplitude of the spikes, suggesting that the spikes result from dumping of intracellular stores and that the entry of extracellular Ca2+ affects only the rate of replenishment of those stores. Membrane depolarization failed to elevate [Ca2+]i and had an effect similar to removal of extracellular Ca2+ in decreasing the frequency of agonist-evoked [Ca2+]i oscillations or inhibiting them altogether, arguing against any significant role for voltage-operated Ca2+ channels.  相似文献   

18.
Diamide is a membrane-permeable, thiol-oxidizing agent that rapidly and reversibly oxidizes glutathione to GSSG and promotes formation of protein-glutathione mixed disulfides. In the present study, the acute effect of diamide on free cytosolic Ca2+ concentration ([Ca2+]i) was examined in fura-2-loaded bovine aortic endothelial cells. At low concentrations (50, 100 μM), diamide reversibly increased spontaneous, asynchronous Ca2+ oscillations, whereas, at higher concentrations (250, 500 μM), diamide caused an immediate synchronized Ca2+ oscillation in essentially all cells of the monolayer, followed by a time-dependent rise in basal [Ca2+]i. The effects of diamide on [Ca2+]i dynamics were independent of extracellular Ca2+. Inhibition of phospholipase C by U-73122 prevented the observed changes in [Ca2+]i. Additionally, the diamide-induced oscillations, but not the rise in basal [Ca2+]i, were blocked by inhibition of the inositol-1,4,5-trisphosphate (IP3) receptor (IP3R) by 2-aminoethyl diphenyl borate. However, diamide failed to alter the plasmalemmal distribution of a green fluorescent protein-tagged phosphatidylinositol-4,5-bisphosphate binding protein, demonstrating that diamide does not activate phospholipase C. Inhibition of glutathione reductase by N,N'-bis(2-chloroethyl)-N-nitrosourea or depletion of glutathione by l-buthionine-sulfoximine enhanced the effects of diamide, which, under these conditions, could only be reversed by addition of dithiothreitol to the wash buffer. Biochemical assays showed that both the IP3R and the plasmalemmal Ca2+-ATPase pump could be reversibly glutathionylated in response to diamide. These results demonstrate that diamide promotes Ca2+ release from IP3-sensitive internal Ca2+ stores and elevates basal [Ca2+]i in the absence of extracellular Ca2+, effects that may be related to a diamide-induced glutathionylation of the IP3R and the plasmalemmal Ca2+-ATPase Ca2+ pump, respectively.  相似文献   

19.
Most types of plant phospholipase D (PLD) require Ca(2+) for activity, but how Ca(2+) affects PLD activity is not well understood. We reported previously that Ca(2+) binds to the regulatory C2 domain that occurs in the N terminus of the Ca(2+)-requiring PLDs. Using Arabidopsis thaliana PLDbeta and C2-deleted PLDbeta (PLDbetacat), we now show that Ca(2+) also interacts with the catalytic regions of PLD. PLDbetacat exhibited Ca(2+)-dependent activity, was much less active, and required a higher level of Ca(2+) than the full-length PLDbeta. Ca(2+) binding of the proteins was stimulated by phospholipids; phosphatidylserine was the most effective among those tested. Scatchard plot analysis of Ca(2+) binding data yielded an estimate of 3.6 high affinity (K(d) = 29 mum) binding sites on PLDbeta. The Ca(2+)-PLDbetacat interaction increased the affinity of the protein for the activator, phosphatidylinositol 4,5-bisphosphate, but not for the substrate, phosphatidylcholine. This is in contrast to the effect of Ca(2+) binding to the C2 domain, which stimulates phosphatidylcholine binding but inhibits phosphatidylinositol 4,5-bisphosphate binding of the domain. These results demonstrate the contrasting and complementary effects of the Ca(2+)- and lipid-binding properties of the C2 and catalytic domains of plant PLD and provide insight into the mechanism by which Ca(2+) regulates PLD activity.  相似文献   

20.
The microsomal Ca-ATPase inhibitor thapsigargin induces in rat salivary acinar cells [Ca2+]i oscillations which, though similar to those activated by agonists, are independent of inositol phosphates or inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores (Foskett, J. K., Roifman, C., and Wong, D. (1991) J. Biol. Chem. 266, 2778-2782). To examine whether the oscillation mechanism resides in another, thapsigargin- and IP3-insensitive intracellular store, we examined the effects of caffeine and ryanodine, known modulators of Ca2+ release from sarcoplasmic reticulum in excitable cells. Oscillations were induced by caffeine (1-20 mM) in nonoscillating thapsigargin-treated acinar cells, which required the continued presence of caffeine, whereas caffeine was without effect or reduced oscillation amplitude in oscillating cells. Ryanodine (10-50 microM) inhibited oscillations in most of the cells. These results suggest that Ca2+ oscillations in parotid acinar cells are driven by periodic Ca2+ release from an IP3-insensitive Ca2+ store with properties similar to sarcoplasmic reticulum of excitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号