首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Nitrate reductase (NR, EC 1.6.6.1) activity in attached cucumber ( Cucumis sativus L. cv. Ashley) leaves changed rapidly and reversibly during light/dark transitions, especially when assayed in the presence of free Mg2+. Light decreased and darkness increased the sensitivity of the enzyme to inhibition by Mg2+. The NR activation state, i.e. activity in the presence of Mg2+ relative to activity in the absence of Mg2+, increased with light intensity up to 400 μmol m−2 s−1 PAR (photosynthetically active radiation). When a desalted crude extract from illuminated leaves was preincubated with ATP, NR was gradually inactivated. Inactivation was only observed when activity was assayed in the presence of Mg2+. The ATP-inactivated NR remained inactive after removing the excess of ATP by gel filtration and it did not occur in partially purified NR preparations. NR extracted from darkened attached leaves was markedly activated when preincubated with 5'-AMP. These results support the view that inactivation/activation of cucumber-leaf NR in response to light/dark signals most likely involves phosphorylation/dephosphorylation of the enzyme catalysed by endogenous proteins. A substantial activation of NR by preincubation with 5'-AMP was also observed when activity was assayed in the absence of Mg2+, thus indicating that 5'-AMP can directly activate NR. Irradiation of an extract from darkened leaves containing FAD promoted a partial activation of NR. This effect was observed both in the +Mg2+ and in the −Mg2+ assay, indicating that activation was caused by photoexcited flavin and did not involve dephosphorylation of the enzyme.  相似文献   

2.
Nguyen J 《Plant physiology》1980,66(5):935-939
The in vivo activity of xanthine dehydrogenase (E.C. 1.2.1.37) was followed in leaf discs excised from illuminated or darkened plants. In cotyledons of Pharbitis nil, 24 hours of darkness enhanced the in vivo activity of xanthine dehydrogenase which increased between 2 to 5-fold depending on the concentration of hypoxanthine of the solution where cotyledon discs were incubated. The same effect occurred in leaves of several other species, in plants with both high and low ureide content. However, the effect of light was not observed in leaves of Zea mays, Pennisetum americanum and Atriplex spongiosa, whereas, it appeared very clearly in other C4 plants such as Sorghum sudanense and Portulaca oleracea. This enzymic activity in chlorophyll-deficient tobacco leaves was the same both for illuminated and darkened plants. In addition, the in vivo activity of xanthine dehydrogenase in roots of Pharbitis nil was not dependent upon the light conditions applied to leaves. In cotyledons of Pharbitis nil, the level of the in vivo activity of xanthine dehydrogenase was influenced by the energy of light and the duration of illumination. The supply of carbohydrates to darkened cotyledons had the same effect as light on the in vivo activity of xanthine dehydrogenase. It is proposed that the effect of light on the in vivo activity of xanthine dehydrogenase in leaves is mainly due to the production of photosynthates which changes the osmotic state of leaf tissue and thus modifies the level of the in vivo activity of xanthine dehydrogenase.  相似文献   

3.
We conducted a series of experiments to assess the effects of oxidative stress on chlorophyll biosynthesis in the vascular plant Cucumis sativus (cucumber). Specifically, cucumber cotyledons were treated with 100 μ M methyl viologen (MV) and subsequently exposed to dark (0 μE m−2 s−1), low light (40–45 μE m−2 s−1), or high light (1500–1600 μE m−2 s−1). Following treatment, extracts of these samples were subjected to high-performance liquid chromatography (HPLC) to quantitate the accumulation of chlorophyll biosynthetic pathway intermediates. The results of these analyses revealed significant accumulation of Mg-protoporphyrin IX monomethyl ester (Mg-proto IX ME) in green (14-h illuminated) as well as in etiolated cotyledons with MV treatment. These data suggest that MV-induced oxidative stress may have inhibited Mg-proto IX ME cyclase activity. Upon exposure to high light, in the presence or absence of MV, both green and etiolated cotyledons predominantly accumulated protoporphyrin IX (Proto IX). These elevated levels of Proto IX might be attributable to attenuated activity of any or all of the following enzymes: Mg-chelatase, Fe-chelatase and protoporphyrinogen IX oxidase. We also observed that MV-induced oxidative stress impacts on chlorophyll biosynthesis to a greater extent than on photosystem II. These results demonstrate that oxidative stress impedes key steps in chlorophyll biosynthesis by either directly or indirectly inhibiting the activity of these enzymes.  相似文献   

4.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

5.
The effect of a temperature close to the freezing point (chilling) on the nitrate reductase system of leaf discs of Cucumis sativus L. cv. Kleine Groene Scherpe was determined in the absence and presence of light. The capacity of leaf discs in the light (250 μE m−2s−1) at 20°C to increase in vivo and in vitro nitrate reductase activity, was unaffected by chilling pretreatment in the dark, but 4 h of chilling pretreatment in the light (250 μE m−2s−1) decreased the capacity to less than 50% of the unchilled control. The chilling inhibition of the capacity to increase nitrate reductase activity was of a photooxidative nature since it only occurred in the presence of light and oxygen. Plants grown at a low light intensity (65 μE m−2s−1) lost 95% of their capacity to increase nitrate reductase activity, while plants grown at 195 μE m−2s−1 retained 80% of their nitrate reducing capacity after 6 h chilling pretreatment in the 250 μE m−2s−1 light. Previously induced nitrate reductase activity was also affected by light during chilling. A lag phase of 7 h preceded a fast phase of decrease in activity. Both in vivo and in vitro activity decreased to 15% of the control value after 18 h of chilling in the light. It is concluded that the induction mechanism of nitrate reductase is primarily affected by photooxidation during chilling. The decrease in nitrate reductase activity is attributed to a decrease in the amount of activity enzyme.  相似文献   

6.
The functioning of the photosynthetic apparatus during leaf senescence was investigated in alstroemeria cut flowers by a combination of gas-exchange measurements and analysis of in vivo chlorophyll fluorescence. Chlorophyll loss in leaves of alstroemeria cut flowers is delayed by light and by a treatment of the cut flowers with gibberellic acid (GA3). The maximal photosynthesis of the leaves was approximately 6 μmol CO2 m−2 s−1 at I 350 μmol m−2 s−1 (PAR) which is relatively low for intact C3 leaves. Qualitatively the gas-exchange rates followed the decline in chlorophyll content for the various treatments, i.e. light and GA3-treatment delayed the decline in photosynthetic rates. However, when chlorophyll loss could not yet be observed in the leaves, photosynthetic rates were already strongly decreased. In vivo fluorescence measurements revealed that the decrease in CO2 uptake is (partly) due to a decreased electron flow through photosystem II. Furthermore, analysis of the fluorescence data showed a high nonphotochemical quenching under all experimental conditions, indicating that the consumption of reducing power in the Calvin cycle is very low. The chlorophyll, remaining after 9 days incubation of leaves with GA3 in the dark should be considered as a 'cosmetic' pigment without any function in the supply of assimilates to the flowers.  相似文献   

7.
Abstract In Methanothrix soehngenii acetate is first activated by an acetate thiokinase rather than a phosphotransacetylase. The specific activity of the acetate thiokinase was 5.29 μmol acetate activated min−1 mg−1 protein with a half maximum rate at 0.74 mM acetate and at 0.047 mM CoA. In cell-free extracts a CO-dehydrogenase activity was measured of 3.02 μmol min−1 mg−1 protein with a half maximum rate at 0.44 mM CO and at 0.18 mM methylviologen. NADP and NAD could not replace methylviologen. F420 showed only low activity as electron acceptor.  相似文献   

8.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

9.
The synthesis of homoglutathione (hGSH) by several plants of the tribe Phaseoleae is shown to be catalysed by a β-alanine-specific hGSH synthetase, Properties of the enzyme from Phaseolus coccineus L. cv. Preisgewinner were studied, using ammonium sulfate precipitates of primary leaf extracts. The hGSH synthetase showed a broad pH optimum at pH 8–9, an absolute requirement for Mg2+, a stimulation by K+, and a high affinity for γ-glutamylcysteine [Km(app.) 73 μ M ]. The enzyme exhibited a high specificity for β-alanine [Km(app.) 1.34 m M ] compared to glycine [Km(app.) 98 m M ]. Chloroplasts, isolated from the leaves of Phaseolus coccineus , contained about 17% of the hGSH synthetase activity in the leaf cells.  相似文献   

10.
Leaf mesophyll cells were isolated from developing first trifoliate leaves of Glycine max (L.) Merr cv. Fiskeby V using a mechanical isolation procedure combined with low speed centrifugation. Cell yields of 17 ± 1.7% were routinely obtained with 55–75% intactness, as assessed by staining techniques, fluorescence transients and the ability of cells to convert to protoplasts after enzyme treatment. Rates of leaf photosynthesis were maximal in 27-day-old plants [280 μmol O2 evolved (mg chlorophyll)-1h-1], from which isolated cells and protoplasts gave rates of up to 140 μmol O2 evolved (mg chlorophyll)-1 h-1. Results are discussed in relation to leaf development and cell status during the attainment of photosynthetic competence.  相似文献   

11.
Benzyladenine (BA) stimulated 5-aminolevulinic acid (ALA) accumulation in the presence of levulinic acid during illumination with 43 μmol m−2 s−1 light in excised etiolated cotyledons of cucumber ( Cucumis sativus L. cv. Aonagajibai). A short dark-pretreatment (6 h) with BA eliminated the lag phase of ALA accumulation. The rate of ALA accumulation during the steady-state phase in cotyledons pretreated with BA for a long period (14 h) was considerably accelerated compared to that in cotyledons pretreated with BA for 6 h. The rate of ALA accumulation during the lag phase was saturated at a very low light fluence (<1.4 μmol m−2 s−1) in both BA-pretreated and water-control cotyledons. The steady-state rate of ALA accumulation increased with increasing light fluence up to 43 μmol m−2 s−1 (parallel to that of Chl formation) in water-control cotyledons. In contrast, in cotyledons pretreated with BA for either 6 or 14 h, the steady-state rate reached a plateau at a very low light fluence. Based on the above results together with our finding that there are two components of Chl formation (M. Dei, 1984. Physiol. Plant. 62: 521–526) possible intermediate steps of Chl biosynthesis pathway affected by BA and light intensity are discussed.  相似文献   

12.
The apparent activity of cytoplasmic fructose bisphosphatase (EC 3.1.3.11) in crude extracts of spinach ( Spinacia oleracea L.) and soybean ( Glycine max [L.] Merr.) leaves was only partially dependent on Mg2+. At least two major non-chloroplastic fructose bisphosphatases that differed in dependence on Mg2+ were chromatographically resolved from spinach leaves. The Mg2+-dependent enzyme had an apparent Michaelis constant of 4 μM for fructose-1,6-P2, was highly specific, and was strongly inhibited by fructose-2,6-P2. Enzyme activity was inhibited by physiological levels of fructose-6-P.
Both species also contained at least one major enzyme, the activity of which was independent of Mg2+. These enzymes had pH optima near neutrality, Michaelis constants of 25 to 30 μM for fructose-1,6-P2, and were inhibited by AMP. Although hexose monophosphates were not metabolized, the enzymes were not specific for fructose-1,6-P2: phosphate was released from phosphoenolpyruvate and ribulose-1, 5-P2, and with fructose-1,6-P2, as substrate, Pi release was about 1.5-fold greater than fructose-6-P production. It is concluded that only the Mg2+-dependent fructose bisphosphatase, previously characterized, functions in the photosynthetic sucrose formation pathway. Inhibition of the Mg2+-dependent enzyme by fructose-6-P may be involved in regulation of sucrose formation.  相似文献   

13.
Primary leaves of 4-day-old, dark-grown mung bean [ Vigna radiata (L.) Wilczek cv. Berken] seedlings were exposed to 24 h of white light (200 μmol m−2 s−1) which was terminated by a 15 min, phytochrome-saturating red or far-red light exposure. Phytochrome content (in vivo and in vitro) and leaf area were monitored during the subsequent dark period. Red light treatments resulted in lower phytochrome content and greater leaf expansion than did far-red treatments. Phytochrome accumulation and leaf expansion were less in norflurazon- (no carotenoids and very low Chl) than in tentoxin- (very low Chl) treated leaves. After 3 days of darkness, leaf expansion was about 25% greater and phytochrome content was about 50% less in red- than in far-red-treated leaves of all treatments. These effects generally took longer to develop in norflurazon- than in tentoxin-treated tissues. Norflurazon-treated tissues exposed to long white light periods apparently do not as accurately reflect phytochrome-controlled photomorphogenic events of green tissues as do tentoxin-treated tissues of mung bean seedlings.  相似文献   

14.
In vivo nitrate reductase (NR, EC 1.6.6.1.) activity was measured in leaves, branches and trunk of field-grown Alnus glutinosa (L.) Gaertn. All of the assayed tissues enzymatically reduced nitrate with a decreasing activity [μmol NO2 (g dry weight)−1 h−1] in the order: leaves > branch bark > inner branch tissues > trunk xylem. The NR activity of the various tissues of excised branches was inhibited by tungstate added to the transpiration stream. Part of the nitrate added to the feeding solution (0.2, 0.5 or 1 m M KNO3) of excised branches disappeared during its transport via the transpiration stream in the perennial tissues. This disappearance was enzymatic since it was decreased by tungstate.
No evidence was obtained for the presence of nitrate in natural xylem sap nor for a significant correlation between nitrate content of soil and leaf NR activity. These results indicate that in the field-grown black alder, the nitrate not reduced in the roots could be reduced in the perennial tissues of aerial parts. Since the leaf NR activity does not reflect the actual in situ nitrate reduction, the existence of a constitutive NR activity in Alnus leaves is suggested.  相似文献   

15.
Growth and development of hydroponically grown pea seedlings ( Pisum sativum L. cv. Alaska) were measured using stem and root length as well as number of leaves and lateral roots. The growth was dependent on the presence of cotyledons and was modulated by the irradiance. All plants were grown in a full nutrient solution. If grown at low irradiance (73 μmol m-2s-1) they depended more and for a longer time on the cotyledons than plants grown at high irradiance (220 μmol m-2s-1). Low irradiance caused stem elongation but decreased root length and number of lateral roots as compared to plants grown at high irradiance. The dark respiration of the leaves was measured as oxygen uptake. In plants grown at the low irradiance, excision of the cotyledons caused the rate of oxygen uptake to increase by a factor of three, and the increase was sensitive to cyanide. Decotyledonized plants showed a high respiration rate and a diminished leaf growth for their entire life cycle. CO2 fixation also increased in decotyledonized pea seedlings grown at either irradiance. The mobilization of food reserves from the seeds was positively correlated to seed dry weight, but only if the plants were grown at 73 μmol m-2s-1. Increasing dry weight of the seed enhanced top growth, whereas root growth was depressed, so that top and root responds differently with regard to that part of growth which depends on mobilization of reserves from the seed.  相似文献   

16.
The influence of nicotianamine (NA) and iron on the activities of 4 iron-containing and two iron-free enzymes in leaves and roots of the NA-free tomato mutant chloronerva and its NA-containing wild-type ( Lycopersicon esculentum Mill. cv. Bonner Beste) was investigated. Aconitase (EC 4.2.1.3) activity in both leaves and roots was much higher in the mutant under normal iron supply (10 μ M FeEDTA) and in wild-type under iron deficiency than in wild-type supplied with 10 μ M FeEDTA. Application of NA to chloronerva leaves led to a decrease of aconitase activity in leaves and roots. NA had no effect on the enzyme activity when added to the assay medium.
Similar results were obtained for the iron-containing enzymes catalase (EC 1.11.1.6), ascorbate-dependent peroxidase (EC 1.11.1.11) and guaiacol-dependent peroxidase (EC 1.11.1.7) in roots. NA treatment of the mutant leaves decreased enzyme activities in roots down to wild-type values. In vivo NA application had no effect on enzyme activities in leaf extracts.
The activities of the iron-free enzymes NAD+-malate dehydrogenase (EC 1.1.1.37) and phosphofructokinase (EC 2.7.1.11) in root and leaf extracts were not influenced by the iron supply to the plants.  相似文献   

17.
In crude extracts of the unicellular green alga Chlorella kessleri Fott et Novákóva grown in red light the activity of the glycolytic enzyme phosphofructokinase (PFK, EC 2.7.1.11) is about 40% higher compared to white light conditions giving the same dry matter production. Application of cycloheximide and density labelling with D2O indicate that this increase depends on the de novo synthesis of the enzyme: Twelve h of illumination at a fluence rate of 7 × 1018 quanta m−2 s−1 (11.6 μmol m−2 s−1) suffice to saturate the effect. In autotrophically grown algae maximal increase in enzyme saturate the effect. In autotrophically grown algae maximal increase in enzyme activity is reached in light of 680 nm, while in 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)-poisoned, glucose-fed cells, light of wavelengths around 727 nm is most effective. Involvement of a phytochrome-like photoreceptor is discussed.  相似文献   

18.
Xanthine dehydrogenase (XDH, EC 1.2.1.37) of Chlamydomonas reinhardtii (Sager) 6145c wild strain has been isolated and characterized for the first time in a unicellular green alga. The enzyme has an Mr of 330 kDa, and FAD, molybdenum and iron are cofactors required for its activity as deduced from results obtained using specific inhibitors, 59Fe-labelling experiments, activity protection by FAD, physiological responses in vivo to iron and molybdenum deficiencies in the culture medium and work with mutants lacking molybdenum cofactor. Xanthine dehydrogenase exhibited Mi-chaelian kinetics typical for a bisubstrate enzyme with apparent Km values for NAD +, hypoxanthine and xanthine of 35, 160 and 70 μ M , respectively. Under phototrophic conditions enzyme activity was repressed by ammonium, but xanthine was not required for the enzyme to be induced, since high levels of enzyme activity were found in cells grown on ammonium and transferred to either N-frec media or media containing either of the nitrogen sources adenine, urea, urate, xanthine, hypoxanthine and guanine.  相似文献   

19.
The effect of different inorganic nitrogen sources on the cellular levels of nitrite reductase (NiR. EC 1.7.7.1) activity has been studied in the filamentous non-N2-fixing cyanobacterium Phormidium laminosum (strain OH-1-p.Cl,). Nitrate-grown cells gave the highest NiR in cell-free extracts [ca 165 nmol of nitrite reduced (mg protein)-1 min-], whereas no activity could be detected in extracts from ammonium-grown cells. The in vivo effect of ammonium on NiR was similar to that exerted by chloramphenicol, suggesting that de novo synthesis of protein was probably repressed by this ion. When ammonium was removed from the culture medium, a rapid increase of de novo synthetized NiR occurred, and the appearance of the enzyme was slightly stimulated by the presence in the medium of either nitrate or nitrite. However, remarkably high levels of NiR [around 1.2 μmol of nitrite reduced (mg protein) −1min−1] could be routinely measured in nitrogen-deficient cells, indicating that the enzyme was ammonium-repressible rather than nitrate- or nitrite-inducible.  相似文献   

20.
A method was developed for the purification of phosphoenolpyruvate carboxylase from darkened maize leaves so that the enzyme retained its sensitivity to inhibition by malate. The procedure depended on the prevention of proteolysis by the inclusion of chymostatin in the buffers used during the purification. The purified enzyme was indistinguishable from that in crude extracts as judged by native polyacrylamide-gel electrophoresis. SDS/polyacrylamide-gel electrophoresis followed by immunoblotting, and Superose 6 gel filtration. Gel-filtration studies showed that the purified enzyme and the enzyme in extracts of darkened or illuminated leaves showed a concentration-dependent dissociation of tetrameric into dimeric forms. Purified phosphoenolpyruvate carboxylase and enzyme in crude extracts from darkened leaves were equally sensitive to inhibition by malate (Ki approx. 0.30 mM) under conditions where it existed in the tetrameric or dimeric forms, but the enzyme in crude extracts from illuminated leaves was less sensitive to malate inhibition (Ki approx. 0.95 mM) whether it was present as a tetramer or as a dimer. It is concluded that changes in the oligomerization state of phosphoenolpyruvate carboxylase are not directly involved in its regulation by light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号