首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic experiments with two inbred strains of mice, AKR/J and DBA/2N, show a single major gene inheritance of additive mode for pyrazole-inducible coumarin 7-hydroxylase. Intragroup variation in the enzyme activity further suggests the contribution of minor modifying genes to the final enzyme activity. Western blot analysis with a polyclonal antibody raised against the purified isozyme P450Coh (highly active in the 7-hydroxylation of coumarin) showed that a difference in the amounts of P450Coh protein between the D2 and AKR mice is the reason for the differences in the enzyme activity between the two mouse strains. Accordingly, changes at the regulatory level rather than at the structural gene would explain the genetic difference in the activity of coumarin 7-hydroxylase. This hypothesis is further supported by the identical Km values of the basal and induced enzyme. The inducibility of coumarin 7-hydroxylase by phenobarbital (PB) and its genetic regulation have been previously studied by A. W. Wood and colleagues ((1974) Science 185, 612-614; (1979); J. Biol. Chem. 254, 5641-5646 and 5647-5651). Our present experiments show that the regulation is the same for the pyrazole-inducible enzyme. Furthermore the experiments with anti-P450Coh antibody show that the PB- and pyrazole-inducible proteins have the same molecular weight and are immunologically indistinguishable. This suggests that PB and pyrazole may induce the same enzyme. Immunoinhibition of microsomal coumarin 7-hydroxylase is practically 100% for control animals and after pretreatment with pyrazole or PB. This suggests that in each case the same or immunologically closely related proteins are metabolizing coumarin and that the P450Coh may be the only P450 isoenzyme in mouse liver microsomes catalyzing the 7-hydroxylation of coumarin. The N-terminal amino acid sequence of P450Coh was found to be identical with those from Type I and Type II genes of the mouse P45015 alpha family for the first 21 amino acids. With rat PB-inducible P450b the homology is only 33%. Also the immunological properties of P450Coh are different from those of P450b. This may suggest that P450Coh has a closer association to the steroid 15 alpha-hydroxylase gene family than to the P450IIB subfamily of phenobarbital-inducible isoenzymes.  相似文献   

2.
Selective induction of coumarin 7-hydroxylase by pyrazole in D2 mice   总被引:3,自引:0,他引:3  
Pyrazole, was given to DBA/2N (D2), C57BL/6N (B6) and AKR/N mice to study its effects on hepatic drug metabolism. A decrease in the total amount of microsomal cytochrome P-450 as well as in the activities of ethylmorphine demethylase and benzo[a]pyrene hydroxylase was found. On the other hand ethoxycoumarin de-ethylase was increased 1.5-2.5-fold (depending on the strain of mouse) and coumarin 7-hydroxylase as much as sevenfold (but only in D2 mice) after pyrazole treatment. This increase was much higher than that caused by phenobarbital, the only well known inducer of coumarin 7-hydroxylase. By reconstituting the mono-oxygenase complex after purification of cytochrome P-450 we found a 40-fold increase in coumarin 7-hydroxylase and eightfold increase in ethoxycoumarin de-ethylase after pyrazole treatment. This was found only in D2 mice. An antibody previously developed against a cytochrome P-450 fraction from the the D2 strain with a high coumarin 7-hydroxylase activity inhibited the microsomal coumarin 7-hydroxylase almost 100% after pyrazole pretreatment of the animals. In the case of control or phenobarbital-treated mice the inhibition was somewhat weaker. With the reconstituted mono-oxygenase complex the inhibition of coumarin 7-hydroxylase was almost 100% both for control and pyrazole-treated D2 mice. The data indicate that pyrazole causes an induction of the microsomal monooxygenase complex different from that caused by phenobarbital or 3-methylcholanthrene and selective for coumarin 7-hydroxylation or 7-ethoxycoumarin de-ethylation. This induction was strong in D2, weak in B6 and absent in AKR/N mice.  相似文献   

3.
Antibody against purified CYP2A1 recognizes two rat liver microsomal P450 enzymes, CYP2A1 and CYP2A2, that catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone, respectively. In human liver microsomes, this antibody recognizes a single protein, namely CYP2A6, which catalyzes the 7-hydroxylation of coumarin. To examine species differences in CYP2A function, liver microsomes from nine mammalian species (rat, mouse, hamster, rabbit, guinea pig, cat, dog, cynomolgus monkey, and human) were tested for their ability to catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone and the 7-hydroxylation of coumarin. Antibody against rat CYP2A1 recognized one or more proteins in liver microsomes from all mammalian species examined. However, liver microsomes from cat, dog, cynomolgus monkey, and human catalyzed negligible rates of testosterone 7 alpha- and/or 15 alpha-hydroxylation, whereas rat and cat liver microsomes catalyzed negligible rates of coumarin 7-hydroxylation. Formation of 7-hydroxycoumarin accounted for a different proportion of the coumarin metabolites formed by liver microsomes from each of the various species examined. 7-Hydroxycoumarin was the major metabolite (greater than 70%) in human and monkey, but only a minor metabolite (less than 1%) in rat. The 7-hydroxylation of coumarin by human liver microsomes was catalyzed by a single, high-affinity enzyme (Km 0.2-0.6 microM), which was markedly inhibited (greater than 95%) by antibody against rat CYP2A1. The rate of coumarin 7-hydroxylation varied approximately 17-fold among liver microsomes from 22 human subjects. This variation was highly correlated (r2 = 0.956) with interindividual differences in the levels of CYP2A6, as determined by immunoblotting. These results indicate that CYP2A6 is largely or entirely responsible for catalyzing the 7-hydroxylation of coumarin in human liver microsomes. Treatment of monkeys with phenobarbital or dexamethasone increased coumarin 7-hydroxylase activity, whereas treatment with beta-naphthoflavone caused a slight decrease. These results suggest that environmental factors can increase or decrease CYP2A expression in cynomolgus monkeys, which implies that environmental factors may be responsible for the large variation in CYP2A6 levels in humans, although genetic factors may also be important. In contrast to rats and mice, the expression of CYP2A enzymes in cynomolgus monkeys and humans was not sexually differentiated. Despite their structural similarity to coumarin, the anticoagulants dicumarol and warfarin do not appear to be substrates for CYP2A6. The overall rate of dicumarol metabolism varied approximately 5-fold among the human liver microsomal samples, but this variation correlated poorly (r2 = 0.126) with the variation observed in CYP2A6 levels and coumarin 7-hydroxylase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. The fluorescence characteristics of 3- and 7-hydroxycoumarin, and 7-hydroxy-and 7-methoxy-4-methylcoumarin, have been determined. 7-Hydroxycoumarin shows excited-state ionization from pH1 to 9. 2. A sensitive and specific fluorimetric method for the determination of 7-hydroxycoumarin (umbelliferone), and its application to liver homogenates and other tissue preparations, are described. 3. The enzymic hydroxylation of coumarin to 7-hydroxycoumarin has been studied by this method and the optimum conditions have been determined for rabbit-liver preparations. The enzymic activity was found in the microsomal fraction and required NADPH2 and oxygen. Activity with NADH2 was one-third of that with NADPH2. 4. Addition of NADP was necessary for full activity of 10000g supernatant preparations of liver. Nicotinamide added during preparation preserved coenzymic activity in tissue stored at −12°. Glucose 6-phosphate had no effect on the activity of stored or fresh tissue. 5. Inhibition occurred with p-chloromercuribenzoate, and with the usual inhibitors of the microsomal drug-metabolizing enzymes, SKF acid, SKF 525A, and Lilly 7132, but not with 2,2′-bipyridyl. 6. Liver homogenates from rabbit, guinea pig, coypu, cat and pigeon showed activity, but preparations of rat or mouse liver, and of locust fat bodies, did not hydroxylate coumarin to umbelliferone. The enzyme system was absent from rat-liver homogenates and microsomal preparations. Moreover, rat liver also contained inhibitors of the rabbit-liver coumarin-7-hydroxylase system and of the further metabolism of umbelliferone by guinea-pig liver. Guinea-pig-liver preparations hydroxylated coumarin to umbelliferone and then converted this product into its glucuronide. 7. The coumarin-7-hydroxylase activity of female rabbit liver was two to three times that of male rabbit liver.  相似文献   

5.
Phenobarbital-induced coumarin 7-hydroxylase is high in DBA/2J and low in C57BL/6N inbred mice; this genetic difference is encoded by the Coh locus on chromosome 7. The aim of this study was to develop an antibody specific for this cytochrome P-450 polymorphism. P-450 fractions, highly specific for phenobarbital-inducible coumarin 7-hydroxylase activity, were purified from DBA/2J and C57BL/6N mouse liver microsomes. Both proteins are 49 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Soret peaks of the reduced cytochrome . CO complexes are 451 nm. Reconstituted DBA/2J coumarin 7-hydroxylase activity exhibits a V twice as high as, and a Km value 10-fold less than, the reconstituted C57BL/6N activity. Antibodies were raised in rabbit. By Ouchterlony immunodiffusion, both antibodies show 100% cross-reactivity with DBA/2J and C57BL/6N microsomes and purified antigens. Yet, DBA/2J but not C57BL/6N 7-hydroxylase activity is inhibited by the antibody to DBA/2J P-450. Both DBA/2J and C57BL/6N activities are blocked by the antibody to C57BL/6N P-450. Neither antibody has any effect on liver microsomal d-benzphetamine N-demethylase, ethylmorphine N-demethylase, aminopyrine N-demethylase, 7-ethoxycoumarin O-deethylase, acetanilide 4-hydroxylase, or aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity. The DBA/2J protein most specific for phenobarbital-induced coumarin 7-hydroxylation is designated 'P-450Coh'. Anti-(P-450Coh) precipitates a relatively minor 49-kDa protein from detergent-solubilized microsomes and from in vitro translation of poly(A+)-enriched total RNA of phenobarbital-treated DBA/2J mouse liver, whereas the major phenobarbital-induced P-450 proteins exhibit a molecular mass of about 51 kDa. The immunoprecipitated translation products correspond to a messenger RNA of 2100 +/- 100 nucleotides.  相似文献   

6.
Hydroxylation of coumarin to 7-hydroxycoumarin by liver microsomes from control or phenobarbital-pretreated mice is 5- to 10-fold higher in the DBA/2J strain compared to the AKR/J strain, while activities of nine other cytochrome P-450 mediated oxidations show only minor differences. Mixing experiments with whole liver homogenates and subcellular fractionations do not reveal the presence of enzyme activators or inhibitors or competing enzyme reactions in either strain. Comparisons of pH optima (pH 7.6), heat stability at 52 degrees C (6 to 8 min for 50% inactivation), and Km values (0.45 to 0.50 microM coumarin) for coumarin hydroxylase show no significant differences in the two strains of mice or their F1 hybrid. Similarly, only minor differences in inhibition of coumarin hydroxylase by carbon monoxide, SKF-525A, menadione, and several other inhibitors of microsomal mixed function oxidase reactions are observed in the two strains. In contrast to these data, aniline and metyrapone, two compounds which bind to the heme iron of cytochrome P-450 to form ferrihemochromes, show differential and opposite patterns of inhibition of enzyme activity in the DBA/2J and AKR/J mouse strains. This latter observation suggests that a structurally different cytochrome P-450 may hydroxylate coumarin in these two inbred mouse strains.  相似文献   

7.
The induction of liver microsomal monooxygenase activities elicited by pyrazole, ethanol, and acetone, all shown to be inducers of rat P450j and rabbit P450LM3a, has been compared in inbred strains of DBA/2N, AKR/J, and Balb/c mouse. Pyrazole strongly increases coumarin 7-hydroxylase (COH) activity in DBA/2N but much less in other strains. The effect of pyrazole on aniline p-hydroxylase and ethanol oxidase activities is also strain dependent: an increase was seen only in the DBA/2N strain. Ethanol and acetone were unable to induce COH, whereas aniline p-hydroxylase and ethanol oxidase were elevated about 1.4- to 3.3-fold in all strains. No strain difference could be detected in aniline p-hydroxylase or ethanol oxidase inducibility. There was a strong correlation between aniline p-hydroxylase and ethanol oxidase activities in every strain, whereas no positive correlation could be found between COH and aniline p-hydroxylase activities. Immunoinhibition experiments showed that a polyclonal antibody against purified pyrazole-inducible COH (P450Coh) blocked about 90% of COH activity, but only about 10% of aniline p-hydroxylase or ethanol oxidase in mouse liver microsomes. Monoclonal antibody 1-91-3 (raised against rat acetone-inducible P450ac) did not inhibit COH, whereas aniline p-hydroxylase was blocked 46-76% and ethanol oxidase 25-70%, depending on the source of microsomes. In immunoblots, anti-P450Coh recognized only its own antigen but not the P450ac, whereas monoclonal antibody 1-98-1 against P450ac detected P450ac and a corresponding form in the D2 mouse liver, but not the P450Coh. The purified P450ac and P450Coh had molecular masses of 52 and 50 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These antigens were expressed differentially in response to pyrazole, ethanol, and acetone: P450Coh was increased only after pyrazole treatment, but 1-98-1-detectable protein was elevated in D2 mouse liver microsomes by ethanol and acetone, but not by pyrazole. We conclude that mouse P450Coh and rat P450ac are not corresponding forms of the same isozyme, and that a P450ac-like protein, responsible for most of aniline p-hydroxylation and ethanol oxidation, is present in the D2 mouse liver. These two P450 isozymes are also dissimilarly expressed in the mouse liver in response to inducer administration.  相似文献   

8.
1. Measurements are presented of the activity and intracellular distribution of phosphoenolypruvate carboxykinase, pyruvate carboxylase and NADP-malate dehydrogenase in rat, guinea-pig and rabbit liver and kidney cortex, together with previously obtained measurements of these enzymes in adipose tissue. 2. In all three tissues pyruvate carboxylase activity was greatest in the rat and lowest in the rabbit. 3. Guinea pig and rabbit were very similar to each other with respect to the extramitochondrial-mitochondrial distribution of phosphoenolpyruvate carboxykinase in all three tissues. 4. NADP-malate dehydrogenase was present in all three tissues in the rat, present in kidney cortex and adipose tissue in the guinea pig and absent from all tissues examines in the rabbit.  相似文献   

9.
The specific activity of cytochrome P450-linked coumarin 7-hydroxylase (COH) of hepatic mitoplasts from DBA/2N mice is up to 55% as great as the microsomal activity. According to Western blot and immunodiffusion analysis and inhibition studies with anti-P450Coh and metyrapone, the mitoplastic P450Coh had the same molecular weight and immunochemical and catalytic properties as the corresponding microsomal enzyme. The inducibility of the two proteins by pyrazole and their genetic regulation, as studied with DBA/2N and AKR/J mice, appears to be similar. However, the mitochondrial electron transfer system was not able to support the COH activity of reconstituted microsomal P450Coh although the enzyme was fully active with the microsomal NADPH-cytochrome P450 reductase. This indicates some differences between the two proteins with respect to their interaction with the electron transfer system. This was confirmed by the ability of anti-adrenodoxin reductase antibody to effectively inhibit the mitoplastic COH but not the COH reconstituted with purified microsomal P450Coh and NADPH-P450 reductase. We have previously found that P450Coh does not react with anti-P450b or anti-P450c antibodies, which recognize respective isoforms in rat liver mitoplasts. While P450Coh from microsomes and mitoplasts possess a number of properties in common, the mitoplast P450Coh represents a new subspecies of mitochondrial P450. Some characteristics of mitoplast P450Coh may be the result of post-translational modifications necessary for processing and translocation into the mitochondria.  相似文献   

10.
Some M  Helander A 《Life sciences》2002,71(20):2341-2349
The concentrations of the serotonin metabolites 5-hydroxyindole-3-acetic acid (5HIAA) and 5-hydroxytryptophol (5HTOL) were determined in spot urine samples of 12 mammalian and one fish species (cat, cow, dog, ferret, golden hamster, guinea pig, horse, monkey, mouse, rabbit, rainbow trout, rat, sheep) and compared with human data. The highest urinary concentrations of 5HTOL were found in the Sprague-Dawley rat (mean 9.5 micromol/L) and NMRI mouse (8.2 micromol/L), and the lowest in rainbow trout, cynomolgus macaque, and human urine (approximately 0.1 micromol/L). The highest 5HIAA concentrations were found in hamster (89.3 micromol/L) and mouse (85.2 micromol/L), and the lowest in rainbow trout, horse and sheep (range 2.0-3.7 micromol/L). Several species showed 5HIAA concentrations similar to that normally observed in human urine (approximately 5-40 micromol/L). This study demonstrated wide inter- and intra-species variations in the urinary concentrations of 5HIAA and 5HTOL, both separately and in the sum of concentrations. The 5HTOL/5HIAA ratio, which is used as an easily accessible index of the relative importance of the reductive and oxidative pathways for serotonin metabolism, also varied considerably between different species. This observation confirms that the much higher urinary 5HTOL/5HIAA ratio in rats (mean 0.35) compared with humans (< 0.01) is due to a higher baseline formation of 5HTOL in the rat. The monkey, ferret, hamster, and rabbit most closely resembled humans in this respect, and at least the two latter species appear to be more suitable than rats as animal models for studying serotonin metabolism and turnover rate, and the metabolic interaction with ethanol.  相似文献   

11.
1. Aldehyde dehydrogenase activity was determined in whole blood samples from 17 selected vertebrates of 5 classes, using 3,4-dihydroxyphenylacetaldehyde (the aldehyde derived from dopamine) as substrate. 2. Aldehyde dehydrogenase activity in blood was widely but unevenly distributed among the species studied. 3. Mean aldehyde dehydrogenase activities in the range of 40-140 nmol/min.ml blood (measured at 37 degrees C, pH 8.8) were found in blood from man, monkey, rabbit, guinea pig and mouse (C57BL and NMRI strains), with the highest activity in rabbit blood. 4. Much lower aldehyde dehydrogenase activities (0.5-7.5 nmol/min.ml blood) were found in blood from Sprague-Dawley and Wistar rat, dog, cat, horse, pig, chicken, caiman, frog and rainbow trout, whereas the activities in blood from DBA mouse, cow, sheep and crucian carp were close to the detection limit.  相似文献   

12.
Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a lambda gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu160----His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94% amino acid similarity with IIA3 and IIA3v. The three cDNAs were inserted into vaccinia virus, and recombinant viruses were used to infect human hepatoma Hep G2 cells. Only IIA3 was able to produce an enzyme that had a reduced CO-bound spectrum with a lambda max at 450 nm. This expressed enzyme was able to carry out coumarin 7-hydroxylation (turnover number of 15 min-1) and ethoxycoumarin O-deethylation. cDNA-expressed IIA3v and IIA4 failed to incorporate heme and were enzymatically inactive. Analysis of IIA proteins in human liver microsomes, using antibody against rat IIA2, revealed two proteins of 49 and 50 kDa, the former of which appeared to correlate with human microsomal coumarin 7-hydroxylase activity. A more striking correlation was found between IIA mRNA and enzyme activity. The rat antibody was able to completely abolish coumarin 7-hydroxylase activity in 12 liver samples. In addition, kinetics of coumarin metabolism in two livers were monophasic over the substrate concentration tested. Km values obtained from human liver (2.3 microM) were similar to those obtained from lysates of hepatoma cells expressing IIA3 (3.6-7.1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Rainbow trout, Oncorhynchus mykiss, and crayfish, Orconectes virilis, have been introduced for the last century into North American streams inhabited by native fishes. We sought to determine the behavioral response of a federally threatened cyprinid, Little Colorado spinedace, Lepidomeda vittata, in the concurrent presence of multiple nonnative predators (rainbow trout and crayfish), as well as the response to the presence of a combination of native (Apache trout, Oncorhynchus apache) and nonnative (crayfish) predators. We held spinedace in artificial streams and exposed them to four treatments: (1) control, (2) crayfish added, (3) trout added, and (4) both crayfish and trout added. Only a single spinedace was consumed over the course of the experiments; it was captured and preyed upon by a crayfish. When both crayfish and Apache trout were present, spinedace response was similar to what it was when only Apache trout were present (decreased movement in and out of refuge), suggesting that crayfish and Apache trout did not mutually influence spinedace behavior. However, when both rainbow trout and crayfish were present, spinedace not only decreased movements in and out of refuge, but also decreased activity rates. We suggest that crayfish and rainbow trout mutually influence spinedace behavior and recommend control or elimination of crayfish and rainbow trout from spinedace critical habitat or potential reintroduction sites. In addition, potential reintroduction sites for Apache trout should be evaluated based on presence of crayfish and spinedace to avoid potential multiple predator interactions and negative effects on spinedace.  相似文献   

14.
In this paper, a novel HPLC-based method with fluorometric detection of coumarin 7-hydroxylase is presented. The described method provides a time-effective, more sensitive and specific alternative to the previously used spectrofluorometric assay. Using the developed method, metabolism of coumarin in 11 samples of human liver microsomes was evaluated and 1790±690 pmol/min/nmol cytochrome P450 (CYP) activity was found. Kinetic parameters and linearity of coumarin 7-hydroxylation were studied in a reconstituted system consisting of recombinant CYP2A6 expressed in Escherichia coli, rat NADPH-CYP reductase and usual components. It was found that a 3.5 to 30 min time of incubation is suitable for estimation of coumarin 7-hydroxylase activity. Observed Km and Vmax values in the CYP2A6 reconstituted system were 1.48±0.37 μM and 3360±180 pmol product/min/nmol CYP, respectively.  相似文献   

15.
The susceptibility of liver microsomes to lipid peroxidation was evaluated in seven species: rat, rabbit, trout, mouse, pig, cow, and horse. Lipid peroxidation was measured as thiobarbituric acid reactive substances formed in the presence of either FeCl3-ADP/ascorbate or FeCl2/H2O2 initiating systems. For rat, rabbit, and trout microsomes, the order of susceptibility to peroxidation was rat > rabbit >> trout. The lack of peroxidation in trout microsomes could be explained by high microsomal vitamin E levels. Membrane fatty acid levels differed between species. Docosahexaenoic acid predominated in the trout, arachidonic acid in the rat, and linoleic acid in the rabbit. The contribution of individual fatty acids to lipid peroxidation reflected the degree of unsaturation with docosahexaenoic > arachidonic >>> linoleic. For all species except trout, the predicted susceptibility to peroxidation, based on the response of individual fatty acids, agreed well with directly measured microsomal peroxidation. With the exception of the trout, vitamin E content ranged from 0.083–0.311 nmol/mg microsomal protein between species, and low levels did not influence susceptibility to peroxidation. Trout microsomes peroxidized only after vitamin E depletion by prolonged incubation. The data indicate that below a vitamin E threshold, species differences in membrane susceptibility to peroxidation can be reasonably predicted based only on content of individual peroxidizable fatty acids.  相似文献   

16.
1. Flavin-containing monooxygenase (FMO) in pulmonary and hepatic microsomes from sheep was analyzed by western blotting by probing with antibodies raised against FMO purified from rabbit lung and pig liver. 2. Pulmonary microsomes from sheep contain a single major protein which cross-reacts with the antibody to rabbit lung FMO, but no band can be observed when probed with the antibody to the pig liver enzyme. Likewise, sheep liver microsomes contain a protein which cross-reacts with the antibody to pig liver FMO, but no significant staining is observed following incubation with antibody to the lung enzyme. 3. Sheep pulmonary and hepatic microsomal FMO also display a difference in activity toward chlorpromazine and n-dodecylamine. 4. Preliminary evidence suggests that sheep FMO may be induced (liver) or repressed (lung) during pregnancy. 5. Sheep are similar to rodents (rat, mouse, guinea pig, hamster and rabbit) in having distinct forms of pulmonary and hepatic FMO. The immunochemical and catalytic difference between sheep liver and lung FMO is similar to that of rabbit.  相似文献   

17.
The ontogeny of vitamin D3 25-hydroxylase activity has been determined in liver microsomes of rat fetuses and neonates. Production of 25-hydroxyvitamin D3 was low (0.11 pmol/g liver/h) 3 days prior to birth. Production rates were 1.2, 2.2, 1.8, and 2.8 pmol/g liver/h on Day 0, Day 2, Day 7, and Day 15, respectively. 25-Hydroxyvitamin D3 production in neonates increased sixfold from Day 15 to Day 22 to a value twice that of the mothers (17.6 pmol/g liver/h compared with 7.3 pmol/g liver/h). Activity in the maternal microsomes was constant (0.22 to 0.30 pmol/mg protein/h) except for the day of parturition (0.54 pmol/mg protein/h) and Day 22 postpartum (0.44 pmol/mg protein/h). A cytosolic factor, present as early as 3 days prior to birth, was required for vitamin D3 25-hydroxylase activity in the fetuses and stimulated the 25-hydroxylase reaction (up to 2.5-fold) in neonates and mothers. The ability of cytosol to prevent degradation of vitamin D3 was also present in the fetal stage. These data suggest that microsomal vitamin D3 25-hydroxylase activity in rat liver microsomes develops slowly and reaches full activity near the weaning stage. Since the cytosolic factor(s) is/are present in the fetal stage, the limiting component in the maturation of vitamin D3 25-hydroxylase activity in liver microsomes is the development of the cytochrome P-450 vitamin D3 25-hydroxylase.  相似文献   

18.
Mouse, rat, rabbit, hamster, cow, pig, sheep, guinea-pig, dog and human erythrocytes were studied. A 0.9% or stronger solution of sodium chloride completely prevented haemolysis; sheep and pig erythrocytes appeared the more fragile, while human and dog erythrocytes were not haemolized in concentrations of 0.4% or more. Haemolysis of human, rabbit, cow, hamster, guineapig, pig and sheep erythrocytes was not observed in solutions of 0.4% or more of glucose. Except for sheep, human and dog erythrocytes, haemolysis was depressed in rate but not completely prevented by phosphate-buffer solution of pH 7.0.  相似文献   

19.
Cytochrome b5 has been purified from hamster liver microsomes. Both Ouchterlony double-diffusion and rocket immunoelectrophoresis experiments indicate that no immuno-cross-reactivity exists between guinea-pig anti-rabbit cytochrome b5 antibody and hamster cytochrome b5. However, anti-rabbit b5 IgG inhibited both hamster microsomal NADH-cytochrome c reductase and NADPH-dependent 7-ethoxycoumarin-O-deethylase activities. Hamster cytochrome b5 stimulated several reconstituted hamster cytochrome P-450-dependent monooxygenase activities and this stimulatory effect could be inhibited by antibody against rabbit cytochrome b5. Two-dimensional iodinated tryptic peptide mapping experiments provided evidence that the polypeptide fingerprint of hamster cytochrome b5 is substantially different from the fingerprints of cytochrome b5 isolated from rabbit, rat and bovine. We also studied the in vitro synthesis of hamster cytochrome b5 from liver mRNA using a wheat germ lysate system. A 16 kDa polypeptide, which is the same size as hamster cytochrome b5, was immunoprecipitated by antibody against rabbit b5. This experiment suggested that in vitro synthesized hamster cytochrome b5 is recognized by a heterologous antibody. Thus, hamster and rabbit cytochrome b5 do share some common immuno-determinants which may be located close to the heme-binding active site.  相似文献   

20.
Aroclor 1254-induced rat liver homogenate supernatant (liver S-9) is routinely used as an exogenous metabolic activation system for the evaluation of mutagenicity of xenobiotics. The purpose of this study is to evaluate whether results obtained with Aroclor 1254-induced liver microsomes would be relevant to human. Aroclor 1254-induced and uninduced rat liver microsomes were compared to human liver microsomes in the metabolism of substrates which are known to be selectively metabolized by the major human cytochrome P450 (CYP) isoforms. The activities studied and the major CYP isoforms involved were as follows: phenacetin O-deethylation (CYP1A2); coumarin 7-hydroxylation, (CYP2A6); tolbutamide 4-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19); dextromethorphan O-demethylation (CYP2D6); chloroxazone 6-hydroxylation (CYP2E1); and testosterone 6beta-hydroxylation (CYP3A4). We found that both induced and uninduced rat liver microsomes were active in all the pathways studied with the exception of coumarin 7-hydroxylation. Coumarin 7-hydroxylation was observed with human liver microsomes but not the rat liver microsomes. Aroclor-1254 was found to induce all activities measured, with the exception of coumarin 7-hydroxylation. Dextromethorphan O-deethylation activity was higher in the rat liver microsomes than the human liver microsomes. Testosterone 6beta-hydroxylation activity was found to be similar between the human liver microsomes and the induced rat liver microsomes. Our results suggest that experimental data obtained with Aroclor 1254-induced rat liver microsomes may not always be relevant to human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号