首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delivery and expression of multiple genes is an important requirement in a range of applications such as the engineering of synthetic signaling pathways and the induction of pluripotent stem cells. However, conventional approaches are often inefficient, nonstoichiometric and may limit the maximum number of genes that can be simultaneously expressed. We here describe a versatile approach for multiple gene delivery using a single expression vector by mimicking the protein expression strategy of RNA viruses. This was accomplished by first expressing the genes together with TEV protease as a single fusion protein, then proteolytically self-cleaving the fusion protein into functional components. To demonstrate this method in E. coli cells, we analyzed the translation products using SDS-PAGE and showed that the fusion protein was efficiently cleaved into its components, which can then be purified individually or as a binding complex. To demonstrate this method in mammalian cells, we designed a differential localization scheme and used live cell imaging to observe the distinctive subcellular targeting of the processed products. We also showed that the stoichiometry of the processed products was consistent and corresponded with the frequency of appearance of their genes on the expression vector. In summary, the efficient expression and separation of up to three genes was achieved in both E. coli and mammalian cells using a single TEV protease self-processing vector.  相似文献   

2.
Overproduction of proteins from cloned genes using fusion protein expression vectors in Escherichia coli and eukaryotic cells has increased the quantity of protein produced. This approach has been widely used in producing soluble recombinant proteins for structural and functional analysis. One major disadvantage, however, of applying this approach for clinical or bioindustrial uses is that proteolytic removal of the fusion carrier is tedious, expensive, and often results in products with additional amino acid residues than the native proteins. Here we describe a new method for productions of native proteins with original amino termini in vivo via intracellular self-cleavage of the fusion protein using tobacco etch virus (TEV) protease. Our design allows one to simultaneously clone any gene into multiple fusion protein vectors using two unique cloning sites (i.e., SnaBI and XhoI) without restriction digestion, and then rapidly identifies those constructs producing soluble native proteins. This method will make the fusion protein approach more feasible for protein drug research.  相似文献   

3.
4.
With the quality by design (QbD) initiative, regulatory authorities demand a consistent drug quality originating from a well-understood manufacturing process. This study demonstrates the application of a previously published mechanistic chromatography model to the in silico process characterization (PCS) of a monoclonal antibody polishing step. The proposed modeling workflow covered the main tasks of traditional PCS studies following the QbD principles, including criticality assessment of 11 process parameters and establishment of their proven acceptable ranges of operation. Analyzing effects of multi-variate sampling of process parameters on the purification outcome allowed identification of the edge-of-failure. Experimental validation of in silico results demanded approximately 75% less experiments compared to a purely wet-lab based PCS study. Stochastic simulation, considering the measured variances of process parameters and loading material composition, was used to estimate the capability of the process to meet the acceptance criteria for critical quality attributes and key performance indicators. The proposed workflow enables the implementation of digital process twins as QbD tool for improved development of biopharmaceutical manufacturing processes.  相似文献   

5.
Affinity tags have become indispensable tools for protein expression and purification. Yet, because they have the potential to interfere with structural and functional studies, it is usually desirable to remove them from the target protein. The stringent sequence specificity of the tobacco etch virus (TEV) protease has made it a useful reagent for this purpose. However, a potential limitation of TEV protease is that it is believed to require a Gly or Ser residue in the P1' position of its substrates to process them with reasonable efficiency. Consequently, after an N-terminal affinity tag is removed by TEV protease, the target protein will usually retain a non-native Ser or Gly residue on its N-terminus, and in some cases this may affect its biological activity. To investigate the stringency of the requirement for Gly or Ser in the P1' position of a TEV protease recognition site, we constructed 20 variants of a fusion protein substrate with an otherwise optimal recognition site, each containing a different amino acid in the P1' position. The efficiency with which these fusion proteins were processed by TEV protease was compared both in vivo and in vitro. Additionally, the kinetic parameters K(M) and k(cat) were determined for a representative set of peptide substrates with amino acid substitutions in the P1' position. The results indicate that many side-chains can be accommodated in the P1' position of a TEV protease recognition site with little impact on the efficiency of processing.  相似文献   

6.
A previously developed computer program for protein design, RosettaDesign, was used to predict low free energy sequences for nine naturally occurring protein backbones. RosettaDesign had no knowledge of the naturally occurring sequences and on average 65% of the residues in the designed sequences differ from wild-type. Synthetic genes for ten completely redesigned proteins were generated, and the proteins were expressed, purified, and then characterized using circular dichroism, chemical and temperature denaturation and NMR experiments. Although high-resolution structures have not yet been determined, eight of these proteins appear to be folded and their circular dichroism spectra are similar to those of their wild-type counterparts. Six of the proteins have stabilities equal to or up to 7kcal/mol greater than their wild-type counterparts, and four of the proteins have NMR spectra consistent with a well-packed, rigid structure. These encouraging results indicate that the computational protein design methods can, with significant reliability, identify amino acid sequences compatible with a target protein backbone.  相似文献   

7.
8.
Alpha(1)-antitrypsin, a protein belonging to the serine protease inhibitor (serpin) superfamily, is characterized by the ability to undergo dramatic conformational changes leading to inactive polymers. Serpin polymerization, which causes a range of diseases such as emphysema, thrombosis and dementia, occurs through a process in which the reactive center loop residues of one serpin molecule insert into the A beta-sheet of another. PoPMuSiC, a program that uses database-derived mean force potentials to predict changes in folding free energy resulting from single-site mutations, was used to modulate rationally the polymerization propensity of alpha(1)-antitrypsin. This was accomplished by generating mutants with a stabilized active form and destabilized polymerized form, or the converse. Of these mutants, five were expressed and characterized experimentally. In agreement with the predictions, three of them, K331F, K331I and K331V, were shown to stabilize the active form and decrease the polymerization rate, and one of them, S330R, to destabilize the active form and to increase polymerization. Only one mutant (K331T) did not display the expected behavior. Thus, strikingly, the adjacent positions 330 and 331, which are located at the beginning of the beta-strand next to the additionally inserted beta-strand in the polymerized form, have opposite effects on the conformational change. These residues therefore appear to play a key role in inducing or preventing such conformational change.  相似文献   

9.
Human acidic mammalian chitinase (hAMCase) was recently shown to be involved in the development of asthma, suggesting a possible application for hAMCase inhibitors as novel therapeutic agents for asthma. We therefore initiated drug discovery research into hAMCase using a combination of in silico methodologies and a hAMCase assay system. We first selected 23 candidate hAMCase inhibitors from a database of four million compounds using a multistep screening system combining Tripos Topomer Search technology, a docking calculation and two-dimensional molecular similarity analysis. We then measured hAMCase inhibitory activity of the selected compounds and identified seven compounds with IC50 values ?100 μM. A model describing the binding modes of these hit compounds to hAMCase was constructed, and we discuss the structure–activity relationships of the compounds we identified, suggested by the model and the actual inhibitory activities of the compounds.  相似文献   

10.
11.
The development of the EGAD program and energy function for protein design is described. In contrast to most protein design methods, which require several empirical parameters or heuristics such as patterning of residues or rotamers, EGAD has a minimalist philosophy; it uses very few empirical factors to account for inaccuracies resulting from the use of fixed backbones and discrete rotamers in protein design calculations, and describes the unfolded state, aggregates, and alternative conformers explicitly with physical models instead of fitted parameters. This approach unveils important issues in protein design that are often camouflaged by heuristic-emphasizing methods. Inter-atom energies are modeled with the OPLS-AA all-atom forcefield, electrostatics with the generalized Born continuum model, and the hydrophobic effect with a solvent-accessible surface area-dependent term. Experimental characterization of proteins designed with an unmodified version of the energy function revealed problems with under-packing, stability, aggregation, and structural specificity. Under-packing was addressed by modifying the van der Waals function. By optimizing only three parameters, the effects of >400 mutations on protein-protein complex formation were predicted to within 1.0 kcal mol(-1). As an independent test, this modified energy function was used to predict the stabilities of >1500 mutants to within 1.0 kcal mol(-1); this required a physical model of the unfolded state that includes more interactions than traditional tripeptide-based models. Solubility and structural specificity were addressed with simple physical approximations of aggregation and conformational equilibria. The complete energy function can design protein sequences that have high levels of identity with their natural counterparts, and have predicted structural properties more consistent with soluble and uniquely folded proteins than the initial designs.  相似文献   

12.
A mesophilic xylanase from Aspergillus oryzae CICC40186 (abbreviated to AoXyn11A) belongs to glycoside hydrolase family 11. The thermostability of AoXyn11A was significantly improved by substituting its N‐terminus with the corresponding region of a hyperthermostable family 11 xylanase, EvXyn11TS. The suitable N‐terminus of AoXyn11A to be replaced was selected by the comparison of B‐factors between AoXyn11A and EvXyn11TS, which were generated and calculated after a 15 ns molecular dynamic (MD) simulation process. Then, the predicted hybrid xylanase (designated AEx11A) was modeled, and subjected to a 2 ns MD simulation process for calculating its total energy value. The N‐terminus substitution was confirmed by comparing the total energy value of AEx11A with that of AoXyn11A. Based on the in silico design, the AEx11A was constructed and expressed in Pichia pastoris GS115. After 72 h of methanol induction, the recombinant AEx11A (reAEx11A) activity reached 82.2 U/mL. The apparent temperature optimum of reAEx11A was 80°C, much higher than that of reAoXyn11A. Its half‐life was 197‐fold longer than that of reAoXyn11A at 70°C. Compared with reAoXyn11A, the reAEx11A displayed a slight alteration in Km but a decrease in Vmax. Biotechnol. Bioeng. 2013; 110: 1028–1038. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Clathrin is a scaffold protein found in different types of coated vesicles in most eukaryotic cells. Major forces that drive clathrin coat formation are the adaptor protein complexes. Trypanosoma cruzi is a flagellate protozoan that ingests macromolecules through receptor-mediated endocytosis, but the molecules involved in this process are still poorly known. Bioinformatics was used to identify proteins in the T. cruzi genome database, permitting discrimination of the genes involved in clathrin coat assembly. Clathrin expression was demonstrated in T. cruzi epimastigotes by using several experimental approaches. Western blot analysis showed a single 180-kDa protein band, which corresponds to the molecular mass of mammalian clathrin heavy chain. A flow cytometry assay demonstrated that the clathrin heavy chain was expressed in 97.74% of the cell population analyzed, with a high-fluorescence signal. Immunofluorescence observation showed labeling clustered at the flagellar pocket and Golgi complex region. Coated vesicles budding off from the flagellar pocket and the trans Golgi network membranes were identified by transmission electron microscopy. Our data demonstrate the expression of clathrin in T. cruzi epimastigotes and show the association of this polypeptide with the parasite endocytic and exocytic pathways.  相似文献   

14.
Verkhivker GM 《Biopolymers》2007,85(4):333-348
The molecular basis of the tyrosine kinases binding specificity and drug resistance against cancer drugs Imatinib and Dasatinib is elucidated using Monte Carlo simulations of the inhibitor-receptor binding with the ensembles of protein kinase crystal structures. In silico proteomics analysis unravels mechanisms by which structural plasticity of the tyrosine kinases is linked with the conformational preferences of Imatinib and Dasatinib in achieving effective drug binding with a distinct spectrum of the tyrosine kinome. The differences in the inhibitor sensitivities to the ABL kinase mutants are rationalized based on variations in the binding free energy profiles with the conformational states of the ABL kinase. While Imatinib binding is highly sensitive to the activation state of the enzyme, the computed binding profile of Dasatinib is remarkably tolerant to the conformational state of ABL. A comparative analysis of the inhibitor binding profiles with the clinically important ABL kinase mutants has revealed an excellent agreement with the biochemical and proteomics data. We have found that conformational adaptability of the kinase inhibitors to structurally different conformational states of the tyrosine kinases may have pharmacological relevance in acquiring a specific array of potent activities and regulating a scope of the inhibitor resistance mutations. This study outlines a useful approach for understanding and predicting the molecular basis of the inhibitor sensitivity against potential kinase targets and drug resistance.  相似文献   

15.
Protein stability and degradation in chloroplasts   总被引:14,自引:0,他引:14  
  相似文献   

16.
A protease inhibitor from the hemolymph of crayfish, Astacus astacus, has been purified by differential centrifugation, acid precipitation and preparative isoelectric focusing. The inhibitor was apparent homogenous in SDS-electrophoresis and had a molecular weight of 23,000. pI was determined to be 4.7 by isoelectric focusing. No inhibitory activity was lost when the inhibitor was incubated in a pH range of 1–11.5. The purified inhibitor was heat stable. Urea (6 m) had no effect upon the inhibitor. The inhibitor was active against subtilisin and a partly purified protease from the fungus Aphanomyces astaci. Pronase was slightly inhibited whereas trypsin, chymotrypsin, papain, Arthrobacter protease, and extracellular proteases from the fungi Aphanomyces stellatus and A. laevis were unaffected. The importance of protease inhibitors in pathogenesis between the parasitic fungus, A. astaci, and its crayfish host, A. astacus is discussed.  相似文献   

17.
18.
Insect metabarcoding has been mainly based on PCR amplification of short fragments within the “barcoding region” of the gene cytochrome oxidase I (COI). However, because of the variability of this gene, it has been difficult to design good universal PCR primers. Most primers used today are associated with gaps in the taxonomic coverage or amplification biases that make the results less reliable and impede the detection of species that are present in the sample. We identify new primers for insect metabarcoding using computational approaches (ecoprimers and degeprime ) applied to the most comprehensive reference databases of mitochondrial genomes of Hexapoda assembled to date. New primers are evaluated in silico against previously published primers in terms of taxonomic coverage and resolution of the corresponding amplicons. For the latter criterion, we propose a new index, exclusive taxonomic resolution, which is a more biologically meaningful measure than the standard index used today. Our results show that the best markers are found in the ribosomal RNA genes (12S and 16S); they resolve about 90% of the genetically distinct species in the reference database. Some markers in protein‐coding genes provide similar performance but only at much higher levels of primer degeneracy. Combining two of the best individual markers improves the effective taxonomic resolution with up to 10%. The resolution is strongly dependent on insect taxon: COI primers detect 40% of Hymenoptera, while 12S primers detect 12% of Collembola. Our results indicate that amplicon‐based metabarcoding of insect samples can be improved by choosing other primers than those commonly used today.  相似文献   

19.
Like most extracellular bacterial proteases, Streptomyces griseus protease B (SGPB) and alpha-lytic protease (alphaLP) are synthesized with covalently attached pro regions necessary for their folding. In this article, we characterize the folding free energy landscape of SGPB and compare it to the folding landscapes of alphaLP and trypsin, a mammalian homolog that folds independently of its zymogen peptide. In contrast to the thermodynamically stable native state of trypsin, SGPB and alphaLP fold to native states that are thermodynamically marginally stable or unstable, respectively. Instead, their apparent stability arises kinetically, from unfolding free energy barriers that are both large and highly cooperative. The unique unfolding transitions of SGPB and alphaLP extend their functional lifetimes under highly degradatory conditions beyond that seen for trypsin; however, the penalty for evolving kinetic stability is remarkably large in that each factor of 2.4-8 in protease resistance is accompanied by a cost of ~10(5) in the spontaneous folding rate and ~5-9 kcal/mole in thermodynamic stability. These penalties have been overcome by the coevolution of increasingly effective pro regions to facilitate folding. Despite these costs, kinetic stability appears to be a potent mechanism for developing native-state properties that maximize protease longevity.  相似文献   

20.
Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号