首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Propagule flow in populations of virtually all organisms has importance for both the genetic cohesion of the species and for its interaction with natural selection. It’s relevance` for the deployment of genetically modified organisms (GMOs) is that propagules can be expected to move, under a wide range of circumstances, and will carry transgenic elements with them. Any consideration of the potential risks of deploying GMOs in the wild must include an assessment of how far and how fast introduced elements are transferred to surrounding conspecific (and sometimes congeneric) populations. In practice, we need estimates of the rates/distances of both pollen and seed movement. There are analytical methods to characterize seed (maternity), pollen (paternity), and established offspring (parent-pair) data, but spatial limitations restrict the area that one can study, and these approaches require modification for application to propagule flow in GMOs. We can apply indirect methods to estimate male gamete dispersal based on pollen pool analysis for single mothers, when some degree of precision can be sacrificed in return for compensating gains in the spatial coverage, but the loss of precision is problematic for GMO tracking. Special methods have been developed for GMO tracking, and we shall show how to assess spatial movement of both transgene-carrying seeds and pollen and will illustrate with an example from Brassica napus, a well-studied crop species. Institute of Forest Biotechnology conference on Ecological Risks Associated with the Products of Forest Biotechnology  相似文献   

2.
Transgene flow from genetically engineered (GE) crops to non‐GE varieties and wild relatives via pollen‐mediated gene flow (PMGF) may create food and environmental biosafety concerns. Assessing the level of PMGF from GE crops is required before commercialization. Whether the level of PMGF estimated at relatively small scales can sufficiently represent the actual scenario at large production scales remains unresolved. Here, we estimated average PMGF frequencies from three insect‐resistant GE rice lines to their non‐GE counterparts at four scales ranging from 9 to 576 m2, having the number of GE to non‐GE plants constantly at the ratio of 8:1. Based on nearly 1.3 million examined seedlings from non‐GE rice plots, very low frequencies (<0.1%) of transgene flow were detected. The highest frequencies were found in plots at the smallest scales. Scale had a significantly negative effect on the frequency of PMGF in rice, with decreased gene flow at increased scale. An extended PMGF model could well represent the experimental data. Field experiments at relatively small scales combined with mathematical modelling could provide useful prediction on the level of rice transgene flow at large production scales. This is probably applicable for other crop species with wind‐ and self‐pollination.  相似文献   

3.
Summary A method has been developed which enables the estimation of the plant gene flow parameters p (pollen dispersal), s (seed dispersal) and t (outcrossing rate) from a selection-free continuously structured population in equilibrium. The method uses Wright's F-coefficients and introduces a new F-function which describes the genetic similarity as a function of the spatial distance. The method has been elaborated for wind pollinated plant species but can be modified for insect pollination and for animal species. In practice allozymes will provide for the necessary neutral genetic variation. The more loci used and the more intermediate the gene frequencies, the more reliable the results. For the estimation of p and t together (when the outcrossing rate is not known) at least two chromosomally unlinked loci are required. The method for estimating s depends on whether the plant species is annual or perennial. The mechanism of selfing has been analysed by the explanation of the value of t by three components: population density (d), pollen flow (p) and relative fertilization potential of own pollen (Z). The concepts of neighbourhood size and isolation by distance, developed by Wright, who used a single gene flow parameter , have been extended to the situation which is realistic for seed plants, using all three parameters p, s and t. When p is large with respect to s, s largely determines the value of the neighbourhood size, whereas p is the most dominating factor in isolation by distance. The use of local effective population size and mean gene transport per generation instead of neighbourhood size and neighbourhood area, respectively, is proposed to avoid confusion. Computer simulations have been carried out to check the validity and the reliability of the method. Populations of 200 plants, using two or three loci with intermediate allele frequencies, gave good results in the calculation of p with known value of t and of s and Ne. With unknown t, especially with lower values of t, larger populations of at least 1,000 plants are necessary to obtain reasonably accurate results for p and mean gene transport per generation M.Grassland Species Research Group Publication No. 81  相似文献   

4.
Fast development and commercialization of genetically modified plants have aroused concerns of transgene escape and its environmental consequences. A model that can effectively predict pollen‐mediated gene flow (PMGF) is essential for assessing and managing risks from transgene escape. A pollen‐trap method was used to measure the wind‐borne pollen dispersal in cultivated rice and common wild rice, and effects of relative humidity, temperature and wind speed on pollen dispersal were estimated. A PMGF model was constructed based on the pollen dispersal pattern in rice, taking outcrossing rates of recipients and cross‐compatibility between rice and its wild relatives into consideration. Published rice gene flow data were used to validate the model. Pollen density decreased in a simple exponential pattern with distances to the rice field. High relative humidity reduced pollen dispersal distances. Model simulation showed an increased PMGF frequency with the increase of pollen source size (the area of a rice field), but this effect levelled off with a large pollen‐source size. Cross‐compatibility is essential when modelling PMGF from rice to its wild relatives. The model fits the data well, including PMGF from rice to its wild relatives. Therefore, it can be used to predict PMGF in rice under diverse conditions (e.g. different outcrossing rates and cross‐compatibilities), facilitating the determination of isolation distances to minimize transgene escape. The PMGF model may be extended to other wind‐pollinated plant species such as wheat and barley.  相似文献   

5.
Genetically modified (GM) plants are rapidly becoming a common feature of modern agriculture. This transition to engineered crops has been driven by a variety of potential benefits, both economic and ecological. The increase in the use of GM crops has, however, been accompanied by growing concerns regarding their potential impact on the environment. Here, we focus on the escape of transgenes from cultivation via crop x wild hybridization. We begin by reviewing the literature on natural hybridization, with particular reference to gene flow between crop plants and their wild relatives. We further show that natural selection, and not the overall rate of gene flow, is the most important factor governing the spread of favorable alleles. Hence, much of this review focuses on the likely effects of transgenes once they escape. Finally, we consider strategies for transgene containment.  相似文献   

6.
Development of plant genetic engineering has led to the deployment of transgenic crops and, simultaneously, to the need for a thorough assessment of the risks associated with their environmental release. This study investigated the occurrence of gene flow from transgenic rice to non-transgenic rice plants under agronomic conditions using a herbicide resistance gene as a tracer marker. Two field experiments were established in the paddy fields of two main Mediterranean rice-growing areas of Spain and Italy. In both locations analyses of phenotypic, molecular and segregation data showed that pollination of recipient plants with pollen of the transgenic source occurred at a significant frequency. A gene flow slightly lower than 0.1% was detected in a normal side-by-side plot design. Similar results were found in a circular plot when the plants were placed at 1-m distance from the transgenic central nucleus. A strong asymmetric distribution of the gene flow was detected among this circle and highest values (0.53%) were recorded following the direction of the dominant wind. A significant lowest value (0.01%) was found in the other circle (5 m from the transgenic plants) as was expected according to the characteristics of rice pollen. Such circular-field trial designs could also prove to be very useful in studying the gene flow to other commercial cultivars of rice with the aim of establishing strategies to prevent pollen dispersal from commercial transgenic fields to the neighbouring conventional fields. Received: 23 February 2001 / Accepted: 31 March 2001  相似文献   

7.
The objective of this study was to assess the frequency of pollen-mediated gene flow from a transgenic rice line, harbouring the gusA and the bar genes encoding respectively, -glucuronidase and phosphinothricin acetyl transferase as markers, to the red rice weed and conventional rice in the Spanish japonica cultivar Senia. A circular field trial design was set up to investigate the influence of the wind on the frequency of pollination of red rice and conventional rice recipient plants with the transgenic pollen. Frequencies of gene flow based on detection of herbicide resistant, GUS positive seedlings among seed progenies of recipient plants averaged over all wind directions were 0.036 ± 0.006% and 0.086 ± 0.007 for red rice and conventional rice, respectively. However, for both red rice and conventional rice, a clear asymmetric distribution was observed with pollination frequency favoured in plants placed under the local prevailing winds. Southern analyses confirmed the hemizygous status and the origin of the transgenes in progenies of surviving, GUS positive plants. Gene flow detected in conventional rice planted at 1, 2, 5 and 10 m distance revealed a clear decrease with increasing distance which was less dramatic under the prevailing wind direction. Consequences of these findings for containment of gene flow from transgenic rice crops to the red rice weed are discussed. The precise determination of the local wind conditions at flowering time and pollination day time appear to be of primary importance for setting up suitable isolation distances.  相似文献   

8.
9.
From 2000 to 2003 a range of Farm Scale Evaluation (FSE) trials were established in the UK to assess the effect of the release and management of herbicide tolerant (HT) crops on arable weeds and invertebrates. The FSE trials for maize were also used to investigate crop-to-crop gene flow and to develop a statistical model for the prediction of gene flow frequency that can be used to evaluate current separation distance guidelines for GM crops. Seed samples were collected from the non-GM half of 55 trial sites and 1,055 were tested for evidence of gene flow from the GM HT halves using a quantitative PCR assay specific to the HT (pat) gene. Rates of gene flow were found to decrease rapidly with increasing distance from the GM source. Gene flow was detected in 30% of the samples (40 out of 135) at 150 m from the GM source and events of GM to non-GM gene flow were detected at distances up to and including 200 m from the GM source. The quantitative data were subjected to statistical analysis and a two-step model was found to provide the best fit for the data. A dynamic whole field model predicted that a square field (150 m x 150 m in size) of grain maize would require a separation distance of 3 m for the adjacent crop to be below a 0.9% threshold (with <2% probability of exceeding the threshold). The data and models presented here are discussed in the context of necessary separation distances to achieve various possible thresholds for adventitious presence of GM in maize.  相似文献   

10.
Humans have altered many floodplain ecosystems around the world by clearing vegetation, building towns and regulating river flows. Studies discerning gene flow and population structure of floodplain-dwelling animals are rare yet are necessary for understanding the effects of human actions on native populations. In south-eastern Australia, the yellow-footed antechinus (Antechinus flavipes) is the only carnivorous marsupial on many lowland floodplains, yet our knowledge of impacts of human activities is limited. The control region of mitochondrial DNA and 11 microsatellite DNA markers were used to explore historic and current gene flow in A. flavipes across and along the Murray River. Simulations were carried out to test different migration models. We found evidence for historic gene flow along and across the river but inferred that small towns and farmland or cleared floodplain sections restricted current gene flow along the river. Populations along the river appear to be isolated, and should be maintained at large enough sizes to avoid genetic problems such as inbreeding depression and loss of evolutionary potential. We also investigated whether 50-year-long maintenance of high water levels for irrigation in summer, at the time of juvenile dispersal, has led to restrictions in gene flow across the river. We found no evidence for restrictions to gene flow across the river and suggest that large floods and dropping tree branches may aid dispersal across the river.  相似文献   

11.
通过对皖南山区和大别山区的101 个小麂的线粒体D-loop 区770 bp序列的分析,探讨了两个种群的遗传多样性、有效种群大小、历史种群动态和种群间的基因流模式。在101 个D-loop 区序列中共发现34 个单倍型,其中24 个分布在皖南种群,10 个分布在大别山种群,种群间无共享单倍型。皖南种群线粒体遗传多样性(h =0. 952,π = 0.016 8)明显高于大别山种群(h =0.734,π = 0. 007 7),雌性有效种群(NE = 146830)亦大于大别山(NE =19840)。通过歧点分布分析表明在更新世第四间冰期,小麂皖南种群经历过一次大规模的种群扩张事件(在约15. 7 万年前)。基因流的分析结果显示皖南种群和大别山种群间存在着明显不对等的基因流(MW N→DB =0. 36;MDB→W N =75. 00)。这种不对称的基因流模式可能反映出在晚更新世冰期循环中,作为天然地理屏障的长江在盛冰期和间冰期对物种扩散的阻隔能力上的差异。  相似文献   

12.
Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) is an endangered plant with only four remnant populations in eastern China. Population genetic information is essential for understanding population history and formulating conservation strategies for this species. Thirteen microsatellite loci were used to investigate genetic variation and population structure of the four remnant populations. Moderate levels of expected heterozygosity (H E = 0.466–0.543) and low allelic diversity (A = 3.1–3.6 and A R = 2.2–2.4, respectively) were observed within populations. Bottleneck tests found three out of four populations to deviate from mutation-drift equilibrium under the two-phase model (TPM), suggesting a recent population decline, which is congruent with known demographic history. The evolutionary history of the species seems dominated by genetic drift rather than gene flow. Low historical gene flow was inferred from several different approaches and N m ranged from 0.582 by the private allele method to 0.783 by the coalescent method. Contemporary gene flow was also found to be even lower for only one first generation migrant was detected with individual-based assignment analysis. Restricted pollen and seed dispersal as well as a recent decline in population size associated with habitat fragmentation may have contributed to low levels of historical and contemporary gene flow, and resulted in a high genetic differentiation. Under this scenario, Berchemiella wilsonii var. pubipetiolata populations are expected to display more pronounced population genetic structure in the future as a result of increased inbreeding and genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号