首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ectoenzyme 5'-nucleotidase purified from chicken gizzard is shown to specifically interact with laminin and fibronectin, components of the extracellular matrix, by a number of different techniques: (i) cosedimentation with laminin by sucrose gradient centrifugation; (ii) affinity adsorption to both laminin- and fibronectin-Sepharose 4-B; (iii) specific binding to both laminin and fibronectin dotted onto cellulose filters; and (iv) monoclonal antibodies against 5'-nucleotidase are shown to interfere with the interaction of 5'-nucleotidase with laminin and fibronectin. For all the techniques employed, the interactions were found to be specific, since 5'-nucleotidase did not bind to unrelated proteins such as bovine serum albumin or to monomeric actin. The interaction of purified chicken gizzard 5'-nucleotidase could be demonstrated for the hydrophobic enzyme solubilized in detergent and after its reconstitution into artificial phospholipid vesicles. The affinity adsorption experiments indicate that reconstituted enzyme binds more strongly to both laminin and fibronectin. The 5'-nucleotidase employed in this study is anchored to the plasma membrane by a glycan-phosphatidylinositol linker. After treatment with phosphatidylinositol-specific phospholipase C, the enzyme is transformed into a hydrophilic form, for which interactions with laminin and fibronectin could also be demonstrated by the dot-blot technique. Thus controlled cleavage of the phosphatidylinositol linker of 5'-nucleotidase could enable cells to rapidly alter their adhesiveness to certain components of the extracellular matrix.  相似文献   

2.
5'-Nucleotidase from chicken gizzard smooth muscle was purified to homogeneity and used as immunogen for generating monoclonal antibodies. From about 150 positive clones nine IgG producing hybridoma cell lines have been selected for further characterization and antibody preparation. The resulting antibodies bind 5'-nucleotidase from chicken smooth muscle, chicken skeletal muscle, and chicken heart muscle but not the enzyme from chicken liver or rat liver. It could clearly be demonstrated that the nine antibodies recognize different antigenic determinants. Four of these antibodies are strong inhibitors of the AMPase activity of 5'-nucleotidase. One antibody is a weak inhibitor and four other antibodies have no effect on its enzymic activity. One of the monoclonal antibodies was used for immunoaffinity purification of 5'-nucleotidase from chicken heart muscle and chicken skeletal muscle. Pure and active enzymes could be isolated from detergent extracts in one step with a 10 to 20-fold higher yield compared to classical purification procedures. The subcellular distribution of 5'-nucleotidase in chicken gizzard was investigated using indirect immunofluorescence. We found a staining of the plasma membrane of smooth muscle cells and endothelial cells by all of the nine antibodies with variations in the staining intensity.  相似文献   

3.
5'-Nucleotidase of a human pancreatic tumor cell line (PaTu II) has been purified to homogeneity after extraction with detergent followed by two affinity chromatographic steps. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified 5'-nucleotidase revealed a single polypeptide band of 67 kDa. The Western blotted enzyme can be overlaid with concanavalin A proving its glycoprotein nature. After treatment with endoglycosidase F the deglycosylated 5'-nucleotidase exhibits an apparent molecular mass of 58 kDa. The kinetic properties of the solubilized enzyme have been determined (Km (AMP) of 4.0 microM; Vmax (AMP) = 8.6 muMOL/min.mg). Adenosine 5'-[alpha,beta-methylene]diphosphate is a competitive inhibitor of 5'-nucleotidase, whereas concanavalin A inhibits the enzymatic activity in a non-competitive manner. Polyclonal antibodies against purified 5'-nucleotidase of PaTu II have been produced which inhibit its enzymatic activity. Polyclonal antibodies raised against the enzyme purified from rat liver or bull seminal plasma also recognize 5'-nucleotidase of PaTu II cells, whereas polyclonal and monoclonal antibodies against the enzyme derived from chicken gizzard show no cross-reactivity. 5'-Nucleotidase appears to be concentrated in the plasma membrane of PaTu II cells as judged by cell fractionation and indirect immunofluorescence studies.  相似文献   

4.
I Wada  S Eto  M Himeno  K Kato 《Journal of biochemistry》1987,101(5):1077-1085
5'-Nucleotidase was found in purified rat liver tritosomes. When tritosomes were subfractionated into the membrane and soluble contents fractions, 73% of the total 5'-nucleotidase activity was found in the membrane fraction and 24% in the soluble contents fraction. Immunoblotting using specific polyclonal antibodies against the rat liver plasma membrane 5'-nucleotidase showed that the mobilities on SDS-polyacrylamide gel electrophoresis of both 5'-nucleotidases in the membrane and contents fractions were identical to that of the enzyme in the plasma membranes (Mr = 72,000). 5'-Nucleotidases in the membrane and contents fractions were sensitive to neuraminidase and converted into a form that was 4 kDa smaller after digestion, as observed in the case of plasma membrane enzyme. 5'-Nucleotidases, both from the membrane and contents fractions, were purified using immunoaffinity chromatography, and the isoelectric points, heat stability, and oligomeric structure of the purified enzymes were compared. Isoelectric focusing and the heat stability test indicated the resemblance of the soluble enzyme to the membrane-bound enzyme. However, the membrane-bound enzyme aggregated in the absence of Triton X-100, whereas the soluble enzyme behaved as a dimer. The topography of 5'-nucleotidase in the tritosomal membranes was studied using antibodies against 5'-nucleotidase and neuraminidase treatment. The inhibition of 5'-nucleotidase were not observed in the intact tritosomal fraction until the tritosomes had been disrupted by osmotic shock. These results show that the active sites and the oligosaccharide chains of 5'-nucleotidase are located on the inside surface of the tritosomal membranes.  相似文献   

5.
5'-Nucleotidases play an important role in the metabolism of nucleosides; for example, the hydrolysis of AMP generates adenosine, which can modulate a variety of cellular functions. We have used the membrane-bound AMPase from chicken gizzard and a secreted form of these enzymes to analyse their modification by the substrate analogue 5'-p-fluorosulphonylbenzoyladenosine (5'-FSBA). 5'-FSBA irreversibly inactivates 5'-nucleotidases by means of covalent modification of the proteins. ATP, a competitive inhibitor of chicken gizzard and snake-venom 5'-nucleotidase, abolished the inactivation by 5'-FSBA, demonstrating that the inactivation was due to the modification of amino acid residues essential for AMPase activity. We have synthesized radioactive 5'-FSBA, which was employed for the radiolabelling of chicken gizzard 5'-nucleotidase. Incorporation of radioactivity was completely abolished in the presence of ATP, which showed that 5'-FSBA acted by the selective modification of amino acid residues at the active site whereas other potential reactive residues of the protein were not attacked. Limited proteolysis of affinity-labelled chicken gizzard 5'-nucleotidase permitted the identification of digestion products containing the catalytic centre. Pseudo-first-order kinetics indicate that modification of a minimum of one amino acid side chain at the active centre is sufficient to result in inactivation of both chicken gizzard and snake-venom 5'-nucleotidases. Incorporation of the radioactive p-sulphonylbenzoyladenosine moiety parallels the inactivation of 5'-nucleotidase by 5'-FSBA and further substantiated the idea that modification of one amino acid residue at the active centre results in loss of the AMPase activity.  相似文献   

6.
The 68 kDa laminin-binding protein purified from chicken skeletal muscle and the ectoenzyme 5'-nucleotidase from chicken gizzard are both able to interact with laminin. They were both shown to possess a nearly identical amino acid composition. The 79 kDa glycosylated form of 5'-nucleotidase can be transformed into an enzymatically active form by treatment with endoglycosidase F (Endo F). Deglycosylated (Endo F-treated) 5'-nucleotidase exhibits an apparent molecular mass of 68 kDa. Using immunological and finger-printing techniques, both proteins were analysed to determine their structural relatedness. The results obtained indicate that both proteins are not identical but may posses a few common peptides of yet unknown sequence and length.  相似文献   

7.
Polyclonal and monoclonal antibodies raised against chicken gizzard 5'-nucleotidase were tested in adhesion assays of embryonic chicken fibroblasts (CEF) for their ability to interfere with the adhesion process of these cells on either laminin or fibronectin substrata. The initial attachment process of CEF on fibronectin and laminin substrata was not influenced by preincubating these cells with antibodies against chicken gizzard 5'-nucleotidase. However, the subsequent spreading process of these cells was found to be inhibited for at least 2 h on a laminin substratum. This effect was obtained with a polyclonal antibody as well as with one from 12 monoclonal antibodies raised against the native enzyme purified from chicken gizzard. In vitro assays demonstrated a competition of laminin and this monoclonal antibody for the binding site on purified 5'-nucleotidase. Spreading-arrested and rounded CEF do not develop prominent intracellular stress-fibers like control cells, instead they seem to concentrate their available actin in areas of presumptive initial contact with the laminin substratum.  相似文献   

8.
5'-Nucleotidase was purified greater than 1000-fold from human placenta by treatment of plasma membranes with S. aureus phosphatidylinositol-specific phospholipase C and affinity chromatography on Con A Sepharose and AMP-Sepharose. The resulting enzyme had a specific activity of greater than 5000 mumol/hr/mg protein and a subunit molecular weight of 73,000. Goat antibodies against 5'-nucleotidase inhibited enzyme activity and detected 5'-nucleotidase after Western blotting. These antibodies also recognized a soluble form of 5'-nucleotidase and residual membrane-bound 5'-nucleotidase which could not be released by phosphatidylinositol-specific phospholipase C treatment, suggesting that the three forms of the enzyme are structurally related. The soluble 5'-nucleotidase may be derived from the membrane-bound form by the action of an endogenous phospholipase C. The structural basis for the inability of some of the membrane-bound 5'-nucleotidase to be released by phosphatidylinositol-specific phospholipase C is unknown.  相似文献   

9.
Chicken gizzard 5'-nucleotidase represents an ectoenzyme which is linked to the plasma membrane via a phosphatidylinositol glycan. We have characterized the possible domain-like organization of 5'-nucleotidase by limited proteolysis. A hydrophobic proteolytic fragment carrying the intact C-terminus, as well as two major hydrophilic products, were identified. We developed procedures for specific radiolabelling of the active center of 5'-nucleotidase. This allowed us to locate the catalytic site within hydrophilic fragments obtained after limited proteolysis. We demonstrate that removal of N-linked carbohydrate chains increases the sensitivity of 5'-nucleotidase to proteolytic attack, indicating that sugar moieties protect against proteolysis. 5'-Nucleotidase represents a binding protein for components of the extracellular matrix. The interaction between 5'-nucleotidase and the laminin/nidogen complex unmasked proteolytic cleavage sites in the C-terminal portion of the enzyme. This resulted in the specific production of a hydrophilic form of 5'-nucleotidase. In summary, we have further characterized chicken gizzard 5'-nucleotidase: (1) the protein is organized into two domain-like structures, (2) the N-terminal domain harbors the active center; (3) N-linked carbohydrates protect the protein against proteolytic degradation; (4) interaction with components of the extracellular matrix alters the conformation of 5'-nucleotidase.  相似文献   

10.
The ecto-enzyme 5'-nucleotidase isolated from chicken gizzard has previously been shown to be a potent ligand of two glycoproteins of the extracellular matrix, namely fibronectin and laminin. Using immunofluorescent labeling techniques we observed that 5'-nucleotidase codistributed with laminin during the development of chicken striated muscle. In contrast, ecto-5'-nucleotidase was only faintly detectable on cells surrounded by a matrix expressing high levels of fibronectin. This distribution pattern distinguished 5'-nucleotidase from the pluripotent extracellular matrix receptors, chicken beta 1-integrins, which are expressed equally well in muscle and connective tissue. In addition, the specific activity of striated muscle ecto-5'-nucleotidase was stable during development and increased markedly posthatching. At each age considered, this specific activity corresponded to an 80-kDa enzyme which was inhibited by alpha,beta-methyleneadenosine diphosphate or by a monoclonal antibody directed against the smooth muscle isoform of the enzyme. Previous in vitro studies have revealed that 5'-nucleotidase is involved in the spreading of various mesenchyme-derived cells, such as chicken embryonic fibroblasts and myoblasts, on a laminin substrate. A prerequisite to examining a potential in vivo role for 5'-nucleotidase as an extracellular matrix ligand was to study its distribution. In adult muscle, 5'-nucleotidase displayed a more restricted distribution than in embryo. Results show that, in vivo, 5'-nucleotidase is revealed by immunofluorescent labeling using poly- and monoclonal antibodies to chicken gizzard 5'-nucleotidase in two structures, the costameres and myotendinous junctions, which are closely related to the focal adhesion sites observed in cell culture.  相似文献   

11.
5'-Nucleotidase, purified to homogeneity from chicken gizzard using published procedures [Dieckhoff, J., Knebel, H., Heidemann, M. and Mannherz, H. G. (1985) Eur. J. Biochem. 151, 377-383] was incorporated into artificial phospholipid vesicles after prolonged dialysis against detergent-free buffer or by a gel filtration procedure. After dialysis the obtained liposomes exhibit a mean diameter of 80 nm and contain 5'-nucleotidase at random orientation, demonstrated by finding up to 50% of the total liposome-incorporated AMPase activity to be cryptic, i.e. could only be measured after their permeabilization by addition of detergent. By affinity chromatography a phospholipid vesicle fraction could be obtained containing almost exclusively cryptic AMPase activity, thus representing the inside-out orientation of 5'-nucleotidase. Comparative analysis of physiochemical and enzymatic properties of 5'-nucleotidase reveals differences between the detergent-solubilized and the liposome-incorporated 5'-nucleotidase including a changed accessibility of the enzyme to polyclonal and monoclonal antibodies. Binding and AMPase inhibition studies with different polyclonal antibodies strongly indicate to the existence of a cytoplasmic domain of chicken gizzard 5'-nucleotidase. F-actin appears preferentially to interact with the cytoplasmic domain of liposome-incorporated 5'-nucleotidase.  相似文献   

12.
5'-Nucleotidase from chicken gizzard smooth muscle has been extracted, using a sulfobetaine derivate of cholic acid, and purified to homogeneity by employing three chromatographic steps. It is shown that the purification scheme can be applied to 5'-nucleotidase from other sources, such as rat liver. On sodium dodecyl sulfate polyacrylamide gels, stained with silver nitrate, the purified enzyme from chicken gizzard shows a single polypeptide band with an apparent molecular mass of 79 kDa. The enzyme purified from rat liver exhibits a molecular mass of 73 kDa in agreement with published data [Bailyes, E.M., Soos, M., Jackson, P., Newby, A. C., Siddle, K. & Luzio, J.P. (1984) Biochem. J. 221, 369-377). Gel filtration, using non-denaturating detergent solutions, indicates that the native enzyme may exist as a homodimer (152 kDa) or homotetramer (310 kDa). Antibodies raised against the enzyme purified from chicken gizzard bind only 5'-nucleotidase, solubilized from chicken muscular sources, when immobilized, but not from chicken or rat liver. The existence of tissue specific variants of 5'-nucleotidase is therefore postulated and it appears that these particular isoforms can also be classified in membranous and secretory forms of 5'-nucleotidase. They also differ in their mode of interaction with actin. The AMPase activity of the membranous (= muscular) isoform is inhibited to a considerably higher percentage by F-actin than the enzyme isolated from rat liver.  相似文献   

13.
We have previously demonstrated that 5'-nucleotidase, known as a plasma membrane enzyme, is also distributed both in rat liver tritosomal membranes and contents (J. Biochem. 101, 1077-1085, 1987). When the lysosomal membranes isolated from rat livers were incubated with phosphatidylinositol-specific phospholipase C purified from B. thuringiensis, about 70% of 5'-nucleotidase activity was released from the membranes. Judging from the result by phase separation with Triton X-114, the enzyme solubilized by the phospholipase C digestion showed a hydrophilic nature such as that of the tritosomal contents. Immunoblot analysis showed that the molecular weight of 5'-nucleotidase released from the lysosomal membranes by the phospholipase C digestion was almost identical with that of the enzymes from the Tritosomal contents. The above results showed that the phosphatidylinositol-specific phospholipase C-like enzyme in the lysosomes may be responsible for the conversion of the lysosomal membrane-bound 5'-nucleotidase to the soluble form present in the lysosomal matrix.  相似文献   

14.
Using flame atomic absorption spectrometry the tight association of zinc to three different purified 5'-nucleotidases at a molar ratio of 2 could be proven. These 5'-nucleotidases purified from bull seminal plasma (BSP), chicken gizzard (CG) and snake venom (SV) are thus zinc metalloproteins. Removal of zinc results in the loss of their AMPase activity, which could be fully restored after readdition of zinc at a molar ratio of 2, for BSP and CG, and 1.5, for SV 5'-nucleotidase. Reactivation of their AMPase activity after the removal of zinc could also be obtained by addition of cobalt and copper ions, which were found to also bind with a molar ratio of 2 to the three 5'-nucleotidases tested.  相似文献   

15.
Four mouse monoclonal antibodies (PTN63, PTN108, PTN124, PTN514) against the ecto-5'-nucleotidase purified from a human pancreatic adenocarcinoma cell line (PaTu II) have been raised and characterized. All four monoclonal antibodies recognize the protein moiety of the glycosylated ecto-5'-nucleotidase. In competition assays it was demonstrated that three of the antibodies (PTN63, PTN108, PTN514) recognize different epitopes within the protein moiety. Furthermore, PTN108, PTN124, and PTN514 reduced the 5'-nucleotidase AMPase activity in contrast to PTN63 having no inhibitory effect. The antibodies show no cross-reactivity with ecto-5'-nucleotidases from rat liver, bull seminal plasma, chicken gizzard and human peripheral blood cells. When assayed by indirect immunofluorescence the antibodies react with the plasma membrane of human pancreatic tumor cells with varying staining intensity. Immunocytochemistry on paraffin sections of normal human pancreas revealed a prominent staining of the pancreatic duct cells. No staining of the acinar and islet cells could be detected. Thus, 5'-nucleotidase is a marker enzyme for pancreatic duct cells and can be used to determine the origin of pancreatic tumor cells. PTN63 reduced the attachment to fibronectin substratum of a human pancreatic adenocarcinoma tumor cell line possessing a high amount of plasma membrane bound ecto-5'-nucleotidase, but had no effect on a cell line lacking the membrane bound AMPase. In contrast, PTN108 and PTN514, which inhibit the AMPase activity, exhibited no influence on the adhesion of human pancreatic tumor cells to fibronectin substratum.  相似文献   

16.
The smooth muscle cells of chicken gizzard harbor the ectoenzyme 5'-nucleotidase. The purified enzyme was reconstituted into 3H-labeled proteoliposomes which were used as a model to study the association of a membrane protein with fibronectin. We demonstrated that the binding process between proteoliposomes and fibronectin has the qualities of a receptor-ligand interaction, i.e., is saturable and specific. In contrast to the association of fibronectin with integrins, the interaction with 5'-nucleotidase does not require divalent metal ions. Synthetic peptides containing the RGD-sequence or a monoclonal antibody interfering with binding of other receptors to the cell-binding domain of fibronectin did not abolish the interaction with 5'-nucleotidase. This indicates that the RGDS-sequence does not represent the major contact site for the AMPase and that the 5'-nucleotidase belongs to a separate class of fibronectin receptors with distinct properties as compared to the integrins.  相似文献   

17.
Evidence is presented for a direct interaction of the intrinsic membrane protein 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) purified from avian smooth muscle (chicken gizzard) and the cytoskeletal component actin. Two different modes of interaction can be discerned: firstly, an immediate inhibitory effect of preferentially filamentous actin (F-actin) on the enzymic (i.e., AMPase) activity of 5'-nucleotidase and a direct binding of this enzyme to immobilized F-actin. Since these effects are suppressed by the addition of myosin subfragment 1, binding of 5'-nucleotidase appears to occur along the F-actin filament axis. Secondly, a time- and 5'-nucleotidase concentration-dependent transformation of also preferentially F-actin into a form unable to inhibit the enzymic activity of deoxyribonuclease I (DNAase I). This desensitization of actin versus DNAase I is not due to a denaturation process and was found to be reversible after addition of ATP. Furthermore, it does not seem to effect the ability of actin to bind to DNAase I. The transformation is accompanied by the hydrolysis of actin-bound nucleotide into adenosine, which remains bound to actin. Therefore, the desensitization of actin versus DNAase I appears to be due to a nucleotide-dependent conformational change of actin. An unidentified contamination of the 5'-nucleotidase preparations to a varying degree with ADPase and ATPase activities appears to be responsible for the desensitization process, although a synergistic role of these activities and 5'-nucleotidase cannot be excluded.  相似文献   

18.
Abstract: A readily soluble 5'-nucleotidase was purified 1,800-fold from rat brain 105,000- g supernatant. The enzyme showed similarity to the 5'-nucleotidase ectoenzyme of plasma membranes. It exhibited a low K m for AMP, which was preferred over IMP as substrate. It was inhibited by free ATP and ADP and by α,β-methylene ADP. The enzyme appeared to be a glycoprotein on the basis of its interaction with concanavalin A. It contained a phosphatidylinositol moiety because treatment with phosphatidylinositol-specific phospholipase C increased its hydrophilicity. A single subunit of Mr = 54,300 ± 800 was observed, which is appreciably smaller than published values for the 5'-nucleotidase ectoenzyme or for other low- K m"soluble" 5'-nucleotidases. The soluble 5'-nucleotidase showed an elution profile on AMP-Sepharose affinity chromatography or on Mono Q ion-exchange chromatography different from that of the brain ectoenzyme. Forty-two percent of the soluble 5'-nucleotidase in brain 105,000- g supernatant did not bind to a Mono Q ion-exchange column because of its interaction with a soluble factor. This factor could be removed by chromatography on concanavalin A-Sepharose. The factor had the novel property of increasing the sensitivity of the purified soluble 5'-nucleotidase toward the inhibitor ATP by 20-fold. This factor was also able to increase the inhibition of brain 5'-nucleotidase ectoenzyme by ATP.  相似文献   

19.
Localization of 5'-nucleotidase in the frog retina was investigated using histochemical and cytochemical techniques. Light-microscopic observations revealed the presence of this enzyme in the inner retinal layers (the nerve fiber layer, ganglion cell layer, and inner plexiform layer). Ultrastructural investigations revealed that the enzyme activity is associated with the plasma membranes of the Müller cell processes, whereas the Müller cell processes present in the outer retinal layers did not demonstrate any detectable enzyme activity. This observation would appear to confirm our previous findings, that 5'-nucleotidase is an ectoenzyme, but its distribution in frog retina differs from that in rodents and it is only present in the inner layers of the retina. The prominent localization of 5'-nucleotidase on the glial plasma membrane may be viewed in the context of the widely accepted interaction between neurones and glial cells. Since nucleotides do not penetrate the plasma membrane, a mechanism to produce membrane-permeable adenosine, important for neuronal function, is postulated. It is known that 5'-nucleotidase produces adenosine by hydrolyzing adenosine 5'-monophosphate (5'-AMP). Therefore one would expect that the glial membrane-bound enzyme can accomplish the final step in this mechanism by producing the adenosine in the extracellular spaces.  相似文献   

20.
Three forms of 5'-nucleotidase purified from human placenta (two membrane-bound forms, one sensitive and one resistant to cleavage by phosphatidylinositol-specific phospholipase C, as well as a soluble form) had the same molecular weight before (73,000 Da) and after (56,000 Da) digestion with N-glycosidase F and showed similar amino acid compositions, N-terminal amino acid sequences, and KMs for IMP (9.6 to 11.9 microM). Thus, these three forms of 5'-nucleotidase appear to have very similar structures. The form sensitive to phosphatidylinositol-specific phospholipase C contained nearly 1 mol myo-inositol/mol of protein as determined by mass spectrometry, indicating a glycosyl phosphatidylinositol membrane anchor. Soluble 5'-nucleotidase contained a similar quantity of myo-inositol, suggesting that it was previously membrane-anchored via glycosyl phosphatidylinositol. The form resistant to phosphatidylinositol-specific phospholipase C contained less myo-inositol, leaving open the possibility of a third form of 5'-nucleotidase with a conventional transmembrane anchor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号