首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Gastric H(+),K(+)-ATPase is shown to transport 2 mol of H(+)/mol of ATP hydrolysis in isolated hog gastric vesicles. We studied whether the H(+) transport mechanism is due to charge transfer and/or transfer of hydronium ion (H(3)O(+)). From transport of [(18)O]H(2)O, 1.8 mol of water molecule/mol of ATP hydrolysis was found to be transported. We performed a molecular dynamics simulation of the three-dimensional structure model of the H(+),K(+)-ATPase alpha-subunit at E(1) conformation. It predicts the presence of a charge transfer pathway from hydronium ion in cytosolic medium to Glu-345 in cation binding site 2 (H(3)O(+)-Lys-164 -Gln-161-Glu-345). No charge transport pathway was formed in mutant Q161L, E345L, and E345D. Alternative pathways (H(3)O(+)-Gln-161-Glu-345) in mutant K164L and (H(3)O(+)-Arg-105-Gln-161-Gln-345) in mutant E345Q were formed. The H(+),K(+)-ATPase activity in these mutants reflected the presence and absence of charge transfer pathways. We also found charge transfer from sites 2 to 1 via a water wire and a charge transfer pathway (H(3)O(+)-Asn-794 -Glu-797). These results suggest that protons are charge-transferred from the cytosolic side to H(2)O in sites 2 and 1, the H(2)O comes from cytosolic medium, and H(3)O(+) in the sites are transported into lumen during the conformational transition from E(1)PtoE(2)P.  相似文献   

2.
Proton transfer to the [Fe-Fe](H) sub-cluster in the Desulfovibrio desulfuricans (DdH) and Clostridium pasteurianum (CpI) [Fe-Fe] hydrogenases was investigated by a combination of first principles and empirical molecular dynamics simulations. Pathways that can be inferred from the X-ray crystal structures of DdH and CpI, i.e., (Glu159→Ser198→Glu156→water460→Cys178→DTMA([Fe-Fe](H)) and (Glu282→Ser319→Glu279→water612→Cys299), respectively, were considered. Proton transfer from Cys178 to DTMA in the [Fe-Fe](H) sub-cluster in DdH was readily observed in our results, specifically when [Fe-Fe](H) was in the reduced state ([Fe(I)-Fe(I)]) or in the mixed valence state for the protonated distal iron Fe(d) ([Fe(I)-Fe(II)-H(-)](H)). A concerted mechanism is proposed, where proton transfer in DdH from Glu159 to Glu156 via Ser198 and Glu156 to Cys178 via water460 readily occurred, as well as from Glu282 to Glu279 via Ser319 and Glu279 to Cys299 via water612 in CpI. The theoretical prediction of the proton transfer characteristics is consistent with the assumed biocatalytic mechanism of the [Fe-Fe] hydrogenases in which the proton binds at Fe(d), providing confirmation that has not been explored so far. The computational results were qualitatively validated by the agreement with experimental hydrogen production activity data for mutated CpI enzymes, relative to the wild-type protein. Finally, the insight provided by the simulations, combined, in part, with experimental validation, are important for establishing an approach in future exploration of proton transfer to the active site in this class of enzymes, and possibly also for biomimetic analogs.  相似文献   

3.
This work aims to elucidate the mechanisms involved in the early activation of glucose transport in hematopoietic M07e cells by stem cell factor (SCF) and a reactive oxygen species (ROS) as H2O2. SCF and H2O2 increase Vmax for glucose transport; this enhancement is due to a higher content in GLUT1 in plasma membranes, possibly through a translocation from intracellular stores. Inhibitors of tyrosine kinases or phospholipase C (PLC) remove glucose transport enhancement and prevent translocation. The inhibitory effect of STI-571 suggests a role for c-kit tyrosine kinase on glucose transport activation not only by SCF, but also by H2O2. On the other hand, neither protein kinase C nor phosphoinositide-3-kinase appear to be involved in the acute activation of glucose transport. Our data suggest that i) in M07e cells, SCF and exogenous H2O2 elicit a short-term activation of glucose transport through a translocation of GLUT1 from intracellular stores to plasma membranes; ii) both stimuli could share at least some signaling pathways leading to glucose uptake activation, involving protein tyrosine kinases and PLC iii) H2O2 could act increasing the level of tyrosine phosphorylation through the inhibition of tyrosine phosphatases and mimicking the regulation role of endogenous ROS.  相似文献   

4.
Effects and mechanisms of H(2)O(2) on production of dicarboxylic acid.   总被引:5,自引:0,他引:5  
The system of producing long chain dicarboxylic acid (DCA) by Candida tropicalis is an aerobic and viscous fermentation system. A method to overcome the gas-liquid transport resistance and to increase oxygen supply is by adding hydrogen peroxide (H(2)O(2)) to the fermentation system. Here we report that the H(2)O(2) not only can enhance the oxygen supply but also change the metabolism by inducing cytochrome P450, the key enzyme of a, o-oxidation. When C. tropicalis was cultivated in a 3-L bioreactor using the combination of aeration and H(2)O(2) feeding, DCA production rates increased by about 10% after a short period of decrease at the beginning. Furthermore, the experiments showed that the maximum activities of P450 could be induced at 2 mM H(2)O(2), and the inducible mechanisms are also discussed. Moreover, we suggest that alkane might be oxidized through the "peroxide shunt pathway" when H(2)O(2) is present. By adding H(2)O(2), the DCA yield in a 22-L bioreactor could increase by 25.3% and reach 153.9 g/L.  相似文献   

5.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1988,256(2):633-639
1. Respiration in the parasitic nematode worm Ascaridia galli was inhibited at O2 concentrations in excess of 255 microM, and an apparent Km,O2 of 174 microM was determined. 2. Mitochondria-enriched fractions isolated from the tissues of A. galli have much lower apparent Km,O2 values (approx. 5 microM). They produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 3. Antimycin A inhibited respiration in muscle tissue mitochondria by 10%, but had no effect on respiration in gut + reproductive tissue mitochondria; the major portion of respiration in both types of mitochondria could be attributed to an alternative electron-transport pathway. 4. o-Hydroxydiphenyl, an inhibitor of alternative electron-transport pathways, inhibits respiration by 98% and completely inhibits the production of H2O2 in gut-plus-reproductive-tissue mitochondria; respiration and H2O2 production in muscle tissue mitochondria were inhibited by 90 and 86% respectively. 5. Another inhibitor of alternative electron transport, salicylhydroxamic acid, had the same effect as o-hydroxydiphenyl on H2O2 production and respiration in gut-plus-reproductive-tissue mitochondria. However, its effect on muscle tissue mitochondria was complex; a low concentration (0.35 mM) stimulated H2O2 production, whereas 3 mM inhibited respiration by 87% and prevented H2O2 production completely. 6. The similarities between the apparent Km,O2 values for H2O2 production and respiration in muscle mitochondria and in gut-plus-reproductive-tissue mitochondria suggests that the site of H2O2 production on the alternative electron-transport chain is cytochrome 'o'. 7. These results are discussed in relation to potential O2 toxicity in A. galli.  相似文献   

6.
Possible proton transport pathways in Clostridium pasteurianum (CpI) [FeFe]-hydrogenase were investigated with molecular dynamics simulations. This study was undertaken to evaluate the functional pathway and provide insight into the hydrogen bonding features defining an active proton transport pathway. Three pathways were evaluated, two of which consist of water wires and one of predominantly amino acid residues. Our simulations suggest that protons are not transported through water wires. Instead, the five-residue motif (Glu282, Ser319, Glu279, H2O, Cys299) was found to be the likely pathway, consistent with previously made experimental observations. The pathway was found to have a persistent hydrogen bonded core (residues Cys299 to Ser319), with less persistent hydrogen bonds at the ends of the pathway for both H2 release and H2 uptake. Single site mutations of the four residues have been shown experimentally to deactivate the enzyme. The theoretical evaluation of these mutations demonstrates redistribution of the hydrogen bonds in the pathway, resulting in enzyme deactivation. Finally, coupling between the protein dynamics near the proton transport pathway and the redox partner binding regions was also found as a function of H2 uptake and H2 release states, which may be indicative of a correlation between proton and electron movement within the enzyme.  相似文献   

7.
Kutuk O  Basaga H 《Free radical research》2003,37(12):1267-1276
The classical pathway of nuclear factor-kappa B (NF-kappaB) activation by several inducers mainly involves the phosphorylation of IkappaBalpha by a signalsome complex composed of IkappaBalpha kinases (IKKalpha and IKKbeta). However, in some cell types hydrogen peroxide (H2O2) has been shown to activate an alternative pathway that does not involve the classical signalsome activation process. In this study, we demonstrate that H2O2 induced NF-kappaB activation in HeLa cells through phosphorylation and degradation of IkappaB proteins as shown by immunblot analysis. Our studies reveal that a commonly used non-steroid anti-inflammatory drug, acetylsalicylic acid (aspirin) prevents H2O2-induced NF-kappaB activation in a dose-dependent manner through inhibition of phosphorylation and degradation of IkappaBalpha and IkappaBbeta. Differential staining and DNA fragmentation analysis also show that aspirin preloading of HeLa cells also prevents H2O2-induced apoptosis in a dose-dependent manner with maximum efficiency at 10 mM concentration. Additionally, aspirin effectively prevents caspase-3 and caspase-9 (cysteinyl aspartate-specific proteases) activation by H2O2. These results suggest that NF-kappaB activation is involved in H2O2-induced apoptosis and aspirin may inhibit both processes simultaneously.  相似文献   

8.
Paradoxically, in eukaryotic cells, hydrogen peroxide (H(2)O(2)) accumulates in response to oxygen deprivation (hypoxia). The source of H(2)O(2) under hypoxia varies according to the species, organs, and tissue. In non-photosynthetic tissues, H(2)O(2) is mainly produced by activation of NAD(P)H-oxidases or by disruption of the mitochondrial electron transport chain (m-ETC). This study showed that hypoxia, and inhibitors of respiration like potassium cyanide (KCN) and sodium nitroprusside (SNP), trigger the production of H(2)O(2) in grapevine buds. However, diphenyleneiodonium, an inhibitor of NAD(P)H-oxidase, did not reduce the H(2)O(2) levels induced by KCN, suggesting that, under respiratory stress, H(2)O(2) is mainly produced by disruption of the m-ETC. On the other hand, γ-aminobutyric acid (GABA), a metabolite that in plants alleviates oxidative stress by activating antioxidant enzymes, reduced significantly the levels of H(2)O(2) induced by KCN and, surprisingly, repressed the expression of genes encoding antioxidant enzymes such as ASCORBATE PEROXIDASE (VvAPX), GLUTATHIONE PEROXIDASE (VvGLPX), SUPEROXIDE DISMUTASE (VvSOD), and one of the CATALASE isoforms (VvCAT1), while VvCAT2 was upregulated. In contrast to GABA, hypoxia, H(2)O(2), and ethylene increased dramatically the expression of genes encoding antioxidant enzymes and enzymes of the alternative respiratory pathway such as ALTERNATIVE NADH-DEHYDROGENASES (VvaNDs) and ALTERNATIVE OXIDASES (VvAOXs). Hence, it is concluded that H(2)O(2) production is stimulated by respiratory stress in grapevine buds, that H(2)O(2) and ethylene act as signalling molecules and activate genes related to the antioxidant defence system, and finally that GABA reduces H(2)O(2) levels by up-regulating the expression of VvCAT2.  相似文献   

9.
10.
The present study was undertaken to: (i) compare the effect of some hematopoietic growth factors, like interleukine-3, thrombopoietin, granulocyte-megakaryocyte colony-stimulating factor, stem cell factor, and reactive oxygen species such as H(2)O(2) on glucose uptake in a human leukemic megakaryocytic cell line, M07; (ii) investigate the changes in kinetic parameters of the transport activity induced by these stimuli; and (iii) evaluate the effect of genistein, a tyrosine kinase inhibitor, on the glucose uptake activation by the cited agents. The results are as follows: (i) exposure of M07 cells to thrombopoietin, granulocyte-megakaryocyte colony-stimulating factor, and stem cell factor resulted in a rapid stimulation of glucose transport; interleukine-3-treated cells exhibited no increase in the rate of glucose uptake, although M07 proliferation is interleukine-3 dependent; a rapid glucose transport enhancement was also observed when M07 cells were exposed to low doses of H(2)O(2); (ii) the transport kinetic parameters point out that an important difference exists between the effect of cytokines and that of H(2)O(2): cytokines increased predominantly the affinity for glucose, while H(2)O(2) raised both the V(max) and K(m) values; (iii) the isoflavone genistein, at a very low concentration, inhibited the stem cell factor- or H(2)O(2)-induced stimulation of hexose transport, reversing the variations of K(m) and V(max), but it did not affect the transport activity of granulocyte-megakaryocyte colony-stimulating factor-treated cells; and (iv) catalase completely abolished the stimulatory action of H(2)O(2) on glucose transport and slightly prevented the effect of stem cell factor, while caffeic acid phenethyl ester was only able to affect the activation due to stem cell factor.  相似文献   

11.
We have investigated the cellular mechanisms that participate in reducing insulin sensitivity in response to increased oxidant stress in skeletal muscle. Measurement of glucose transport and glycogen synthesis in L6 myotubes showed that insulin stimulated both processes, by 2- and 5-fold, respectively. Acute (30 min) exposure of muscle cells to hydrogen peroxide (H(2)O(2)) blocked the hormonal activation of both these processes. Immunoblot analyses of cell lysates prepared after an acute oxidant challenge using phospho-specific antibodies against c-Jun N-terminal kinase (JNK), p38, protein kinase B (PKB), and p42 and p44 mitogen-activated protein (MAP) kinases established that H(2)O(2) induced a dose-dependent activation of all five protein kinases. In vitro kinase analyses revealed that 1 mM H(2)O(2) stimulated the activity of JNK by approximately 8-fold, MAPKAP-K2 (the downstream target of p38 MAP kinase) by approximately 12-fold and that of PKB by up to 34-fold. PKB activation was associated with a concomitant inactivation of glycogen synthase kinase-3. Stimulation of the p38 pathway, but not that of JNK, was blocked by SB 202190 or SB203580, while that of p42/p44 MAP kinases and PKB was inhibited by PD 98059 and wortmannin respectively. However, of the kinases assayed, only p38 MAP kinase was activated at H(2)O(2) concentrations (50 microM) that caused an inhibition of insulin-stimulated glucose transport and glycogen synthesis. Strikingly, inhibiting the activation of p38 MAP kinase using either SB 202190 or SB 203580 prevented the loss in insulin-stimulated glucose transport, but not that of glycogen synthesis, by oxidative stress. Our data indicate that activation of the p38 MAP kinase pathway plays a central role in the oxidant-induced inhibition of insulin-regulated glucose transport, and unveils an important biochemical link between the classical stress-activated and insulin signaling pathways in skeletal muscle.  相似文献   

12.
Bennett B  Lemon BJ  Peters JW 《Biochemistry》2000,39(25):7455-7460
Carbon monoxide binding and inhibition have been investigated by electron paramagnetic resonance (EPR) spectroscopy in solution and in crystals of structurally described states of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum. Simulation of the EPR spectrum of the as-isolated state indicates that the main component of the EPR spectrum consists of the oxidized state of the "H cluster" and components due to reduced accessory FeS clusters. Addition of carbon monoxide to CpI in the presence of dithionite results in the inhibition of hydrogen evolution activity, and a characteristic axial EPR signal [g(eff(1)), g(eff(2)), and g(eff(3)) = 2.0725, 2.0061, and 2.0061, respectively] was observed. Hydrogen evolution activity was restored by successive sparging with hydrogen and argon and resulted in samples that exhibited the native oxidized EPR signature that could be converted to the reduced form upon addition of sodium dithionite and hydrogen. To examine the relationship between the spectroscopically defined states of CpI and those observed structurally by X-ray crystallography, we have examined the CpI crystals using EPR spectroscopy. EPR spectra of the crystals in the CO-bound state exhibit the previously described axial signal associated with CO binding. The results indicate that the addition of carbon monoxide to CpI results in a single reversible carbon monoxide-bound species characterized by loss of enzyme activity and the distinctive axial EPR signal.  相似文献   

13.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

14.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1987,243(2):589-595
1. Mitochondria from the parasitic nematode worm Nippostrongylus brasiliensis produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 2. Antimycin A inhibits respiration and H2O2 production by 70 and 65% respectively; the residual activities can be attributed to alternative electron-transport pathway(s). 3. o-Hydroxydiphenyl and 1,3,5-trihydroxybenzene, inhibitors of alternative electron transport, inhibit respiration by 37% and H2O2 production by 26%. 4. Another inhibitor of alternative electron transport, salicylhydroxamic acid, shows a complex mode of action; low concentrations (less than 0.5 mM) stimulate respiration and H2O2 production, whereas 2 mM-salicylhydroxamic acid inhibited respiration by 35% and stopped H2O2 production completely. 5. O2 thresholds were observed for the inhibition of respiration at O2 concentrations greater than 57.7 microM and inhibition of H2O2 production (greater than 20.5 microM-O2); apparent Km values for oxygen were 5.5 microM and 3.0 microM respectively. 6. In the presence of antimycin A the O2-inhibition thresholds and apparent Km values for O2 of respiration and H2O2 production matched closely, suggesting that the alternative oxidase is a likely site of H2O2 production. 7. These results are discussed in relation to O2 toxicity to N. brasiliensis.  相似文献   

15.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

16.
Li X  May JM 《Mitochondrion》2002,1(5):447-453
Mitochondria generate potentially damaging amounts of superoxide and H2O2 during oxidative metabolism. Although many assays are available to measure mitochondrial H2O2 generation, most detect H2O2 that has escaped the organelle. To measure H2O2 within mitochondria that contain catalase, we have developed an assay based on the ability of H2O2 to inhibit catalase in the presence of 3-amino-1,2,4-triazole. The assay is simple to perform, does not require expensive instrumentation, and is specific for H2O2. Results from this assay show that H2O2 generation in rat heart mitochondria reflects the activity of the electron transport chain. Further, liver mitochondria prepared from selenium-deficient rats have increased succinate-stimulated rates of H2O2 generation. This indicates that mitochondrial selenoenzymes are important for H2O2 removal. It also demonstrates the utility of this assay in measuring H2O2 release from mitochondria that do not contain catalase. The assay should be useful for study of both superoxide-dependent H2O2 generation in situ, and the role of endogenous mitochondrial catalase in H2O2 removal.  相似文献   

17.
Zhang L  Happe T  Melis A 《Planta》2002,214(4):552-561
Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.  相似文献   

18.
Xanthine/xanthine oxidase and H2O2 stimulated sugar transport. Application of superoxide dismutase and catalase to the cells showed an inhibitory effect on these agent-stimulated sugar transports. Addition of amiloride and 4-acetamide-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), which abolish the cytoplasmic alkalinization, inhibited the stimulation of sugar transport by xanthine/xanthine oxidase in the presence of catalase. The calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluoperazine inhibited H2O2-stimulated sugar transport. These results suggest that O2- stimulates sugar transport in an intracellular pH-dependent manner and that H2O2 stimulates sugar transport in a calcium-calmodulin-dependent manner. These mechanisms may be involved in sugar-transport stimulation in mouse fibroblast BALB/3T3 cells by the tumor-promoting phorbol ester phorbol-12,13-dibutyrate and insulin, since the stimulatory effects of these agents were inhibited by scavengers of oxygen radicals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号