首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A S Acharya  R Seetharam 《Biochemistry》1985,24(18):4885-4890
X-ray diffraction analysis of deoxyhemoglobin S crystals has implicated that a number of carboxyl groups of the protein are present at or near the intermolecular contact regions. The reactivity of these or other carboxyl groups of hemoglobin S for the amidation with an amino sugar, i.e., glucosamine, and the influence of amidation on the oxygen affinity and polymerization have been investigated. Reaction of oxyhemoglobin S at pH 6.0 and 23 degrees C with 20 mM 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and 100 mM [3H]glucosamine for 1 h resulted in an incorporation of nearly two residues of glucosamine per tetramer. The amidation was very specific for the carboxyl groups of globin; the glucosamine was not incorporated into the heme carboxyls. Derivatization of hemoglobin S by glucosamine increased the O2 affinity of the protein but had no influence on either the Hill coefficient or the Bohr effect. Amidation by glucosamine also increased the solubility of deoxyhemoglobin S by about 55%. Tryptic peptide mapping of the modified hemoglobin S indicated that the peptides beta-T3 and beta-T5 contained the glucosamine incorporated into the protein. Sequence analysis of glucosamine-modified beta-T3 and beta-T5 demonstrated that the gamma-carboxyl groups of Glu-22 and Glu-43, respectively, had been derivatized with glucosamine. The residue Glu-43(beta) shows a high selectivity toward glycine ethyl ester also, whereas Glu-22(beta) is not reactive toward this amine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M J Rao  A S Acharya 《Biochemistry》1992,31(32):7231-7236
Glu-43(beta) of hemoglobin A exhibits a high degree of chemical reactivity around neutral pH for amidation with nucleophiles in the presence of carbodiimide. Such a reactivity is unusual for the side-chain carboxyl groups of proteins. In addition, the reactivity of Glu-43(beta) is also sensitive to the ligation state of the protein [Rao, M. J., & Acharya, A. S. (1991) J. Protein Chem. 10, 129-138]. The influence of deoxygenation of hemoglobin A on the chemical reactivity of the gamma-carboxyl group of Glu-43(beta) has now been investigated as a function of pH (from 5.5 to 7.5). The chemical reactivity of Glu-43(beta) for amidation increases upon deoxygenation only when the modification reaction is carried out above pH 6.0. The pH-chemical reactivity profile of the amidation of hemoglobin A in the deoxy conformation reflects an apparent pKa of 7.0 for the gamma-carboxyl group of Glu-43(beta). This pKa is considerably higher than the pKa of 6.35 for the oxy conformation. The deoxy conformational transition mediated increase in the pKa of the gamma-carboxyl group of Glu-43(beta) implicates this carboxyl group as an alkaline Bohr group. The amidated derivative of hemoglobin A with 2 mol of glycine ethyl ester covalently bound to the protein was isolated by CM-cellulose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Incubation of 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-(phosphonomethyl)glycine), with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first order kinetics, with a second order rate constant of 2.2 M-1 min-1 at pH 5.5 and 25 degrees C. The inactivation is prevented by preincubation of the enzyme with a combination of the substrate shikimate 3-phosphate plus glyphosate, but not by shikimate 3-phosphate, phosphoenolpyruvate, or glyphosate alone. Increasing the concentration of glyphosate during preincubation resulted in decreasing the rate of inactivation of the enzyme. Complete inactivation of the enzyme required the modification of 4 carboxyl groups per molecule of the enzyme. However, statistical analysis of the residual activity and the extent of modification showed that among the 4 modifiable carboxyl groups, only 1 is critical for activity. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate by reverse phase chromatography resulted in the isolation of a [14C]glycine ethyl ester-containing peptide that was absent in the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. By amino acid sequencing of this labeled peptide, the modified critical carboxyl group was identified as Glu-418. The above results suggest that Glu-418 is the most accessible reactive carboxyl group under these conditions and is located at or close to the glyphosate binding site.  相似文献   

4.
Carboxyl groups of HbS are readily activated by water-soluble carbodiimide atpH 6.0 and room temperature. These o-acylurea intermediates (activated carboxyl) are accessible for nucleophilic attack by amines. With glycine ethyl ester, the amidation is very selective for the -carboxyl of Glu-43() and more than 65% of the glycine ethyl ester incorporated is on this carboxyl group. In contrast, glucosamine derivatizes the -carboxyl group of Glu-22() as well as that of Glu-43() to nearly the same degree. However, the total amidation of HbS by glucosamine is lower than that with glycine ethyl ester. The differential selectivity of the two amines is apparently related to the differences in the microenvironment of the -carboxyl groups of Glu-22() and Glu-43(), which either facilitates or refracts the aminolysis of the activated carboxyl with the two amines to different degrees. The carboxyl groups of isolated -chain exhibit a higher reactivity for amidation with glycine ethyl ester than does the tetramer. The carboxyl groups of Glu-22() and Glu-43() and that of Asp-47() are all activated by carbodiimide suggesting that the higherpKa of these carboxyl groups (facilitating the activation) is a property of tertiary interaction of the polypeptide chain. The interaction of the -chain with -chain, i.e., generation of the quaternary interactions, reduces overall reactivity of the carboxyl groups of the protein. The higher selectivity of hemoglobin S for amidation at Glu-43() with glycine ethyl ester compared with that of isolated -chain appears to be primarily a consequence of decreased amidation at sites other than at Glu-43().  相似文献   

5.
J A Buechler  S S Taylor 《Biochemistry》1988,27(19):7356-7361
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation [Toner-Webb, J., & Taylor, S. S. (1987) Biochemistry 26, 7371]. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [14C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Val-6(β) of hemoglobin S forms the primary site of intertetrameric interaction in the polymerization of deoxy hemoglobin S. However, a number of other intermolecular interactions contribute significantly to the polymerization process as well as to the stability of the polymerized gel. The strong stabilizing influence of Val-6(β) in the polymerization process is reflected in the fact that although a number of mutations at any one of the intermolecular contact regions (or perturbation of these contact regions by chemical modification) result in some increase in the solubility of deoxy hemoglobin S, none of these mutations and/or chemical modifications completely neutralize the polymerizing influence of Val-6(β), i.e., restores the solubility to that of hemoglobin A. Additivity and/or synergy of the solubilizing influence of two or more chemical modification reactions each of which independently increases the solubility may be considered as a possible strategy to restore the solubility of deoxy hemoglobin S to that of hemoglobin A. In the present study, the cumulative solubilizing influence of amidation of Glu-43(β) and hydroxyethylation of α-amino groups of hemoglobin S has been investigated by preparing hemoglobin S with double modification. Modification of Glu-43(β) by amidation with glycine ethyl ester did not influence the reactivity of the α-amino groups of hemoglobin S toward reductive hydroxyethylation, thus permitting the preparation of hemoglobin S with the two modifications. The reductive hydroxyethylation increased the oxygen affinity of amidated hemoglobin S to nearly the same degree as it does on modification of unmodified hemoglobin. In addition, hemoglobin S with double modification has a Hill coefficient that is the same as that of unmodified hemoglobin S, suggesting that the overall quaternary interaction of hemoglobin S with a double modification is nearly the same as the unmodified protein. However, the reductive hydroxyethylation of the amidated hemoglobin S increased the solubility of the protein further. The solubility of hemoglobin S with a double modification is nearly twice that of the unmodified protein and is close to that of 1:1 mixture of hemoglobin S and hemoglobin F. The results demonstrate the additivity of the solubilizing influence of perturbing the quinary interactions at the intermolecular contact regions of deoxy hemoglobin S.  相似文献   

7.
The amino acid residue(s) involved in the activity of buckwheat α-glucosidase was modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester. The modification resulted in the decrease in the hydrolytic activity of the enzyme following pseudo-first order kinetics. Competitive inhibitors, such as Tris and turanose, protected the enzyme against the inactivation. Protection was provided also by alkali metal, alkaline-earth metal and ammonium ions, though these cations are non-essential for the activity of the enzyme. Turanose or K+ protected one carboxyl group per enzyme from the modification with carbodiimide and glycine ethyl ester. Free sulfhydryl group of the enzyme was also partially modified with carbodiimide, but the inactivation was considered to be mainly attributed to the modification of essential carboxyl group rather than to that of free sulfhydryl group.  相似文献   

8.
The -carboxyl groups of Glu-43() and Glu-22() of hemoglobin-S (HbS), two intermolecular contact residues of deoxy protein, are activated by carbodiimide atp H 6.0. The selectivity of the modification by the two nucleophiles, glycine ethyl ester (GEE) and glucosamine, is distinct. Influence ofN-hydroxysulfosuccinimide, a reagent that rescues carbodiimide-activated carboxyl (O-acyl isourea) as sulfo-NHS ester, on the overall selectivity and efficiency of the coupling of Glu-22() and Glu-43() with nucleophiles has been investigated. Sulfo-NHS increases the extent of coupling of nucleophiles to HbS. The rescuing efficiency of sulfo-NHS(increase in modification) with GEE and galactosamine as nucleophiles is 2.0 and 2.8, respectively. In the presence of sulfo-NHS, the extent of modification of a carboxyl group is a direct reflection of the extent to which it is activated (i.e., the protonation state of the carboxyl group). The modification reaction exhibits very high selectivity for Glu-43() with GEE and galactosamine (GA) in the presence of sulfo-NHS. From the studies of the kinetics of amidation of oxy-HbS at its Glu-43() (i.e., chemical reactivity) as a function of thepH in the region of 5.5–7.5, the apparentpKa of its -carboxyl group has been calculated to be 6.35. Deoxygenation of HbS, nearly doubles the chemical reactivity of Glu-43() of HbS atpH 7.0. It is suggested that the increased hydrophobicity of the microenvironment of Glu-43(), which occurs on deoxygenation of the protein, is reflected as the increased chemical reactivity of the -carboxyl group and could be one of the crucial preludes to the polymerization process.  相似文献   

9.
    
Val-6() of hemoglobin S forms the primary site of intertetrameric interaction in the polymerization of deoxy hemoglobin S. However, a number of other intermolecular interactions contribute significantly to the polymerization process as well as to the stability of the polymerized gel. The strong stabilizing influence of Val-6() in the polymerization process is reflected in the fact that although a number of mutations at any one of the intermolecular contact regions (or perturbation of these contact regions by chemical modification) result in some increase in the solubility of deoxy hemoglobin S, none of these mutations and/or chemical modifications completely neutralize the polymerizing influence of Val-6(), i.e., restores the solubility to that of hemoglobin A. Additivity and/or synergy of the solubilizing influence of two or more chemical modification reactions each of which independently increases the solubility may be considered as a possible strategy to restore the solubility of deoxy hemoglobin S to that of hemoglobin A. In the present study, the cumulative solubilizing influence of amidation of Glu-43() and hydroxyethylation of -amino groups of hemoglobin S has been investigated by preparing hemoglobin S with double modification. Modification of Glu-43() by amidation with glycine ethyl ester did not influence the reactivity of the -amino groups of hemoglobin S toward reductive hydroxyethylation, thus permitting the preparation of hemoglobin S with the two modifications. The reductive hydroxyethylation increased the oxygen affinity of amidated hemoglobin S to nearly the same degree as it does on modification of unmodified hemoglobin. In addition, hemoglobin S with double modification has a Hill coefficient that is the same as that of unmodified hemoglobin S, suggesting that the overall quaternary interaction of hemoglobin S with a double modification is nearly the same as the unmodified protein. However, the reductive hydroxyethylation of the amidated hemoglobin S increased the solubility of the protein further. The solubility of hemoglobin S with a double modification is nearly twice that of the unmodified protein and is close to that of 1:1 mixture of hemoglobin S and hemoglobin F. The results demonstrate the additivity of the solubilizing influence of perturbing the quinary interactions at the intermolecular contact regions of deoxy hemoglobin S.  相似文献   

10.
W K?ller  P E Kolattukudy 《Biochemistry》1982,21(13):3083-3090
Cutinase from Fusarium solani f. sp. pisi was inhibited by diisopropyl fluorophosphate and phenylboronic acid, indicating the involvement of an active serine residue in enzyme catalysis. Quantitation of the number of phosphorylated serines showed that modification of one residue resulted in complete loss of enzyme activity. One essential histidine residue was modified with diethyl pyrocarbonate. This residue was buried in native cutinase and became accessible to chemical modification only after unfolding of the enzyme by sodium dodecyl sulfate. The modification of carboxyl groups with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the absence of sodium dodecyl sulfate did not result in inactivation of the enzyme; however, such modifications in the presence of sodium dodecyl sulfate resulted in complete loss of enzyme activity. The number of residues modified was determined by incorporation of [14C]glycine ethyl ester. Modification of cutinase in the absence of sodium dodecyl sulfate and subsequent unfolding of the enzyme with detergent in the presence of radioactive glycine ester showed that one buried carboxyl group per molecule of cutinase resulted in complete inactivation of the enzyme. Three additional peripheral carboxyl groups were modified in the presence of sodium dodecyl sulfate. Carbethoxylation of the essential histidine and subsequent incubation with the esterase substrate p-nitrophenyl [1-14C]acetate revealed that carbethoxycutinase was about 10(5) times less active than the untreated enzyme. The acyl-enzyme intermediate was stabilized under these conditions and was isolated by gel permeation chromatography. The results of the present chemical modification study indicate that catalysis by cutinase involves the catalytic triad and an acyl-enzyme intermediate, both characteristic for serine proteases.  相似文献   

11.
The 15 exposed carboxyl groups of alpha-chymotrypsin were modified with glycine ethyl ester at low pH using barbodiimide reagent. The specificity of the modified enzyme (Chy-15) was studied over the pH range of 4 to 9 with both N-acylated and non-N-acylated amino acid esters. The modified enzyme had lower reactivity toward N-acylated esters than non-N-acylated esters compared to the native enzyme. Typical substances such as acetyl- and benzoyl-L-tyrosine ethyl esters retained 4 and 9% activity, whereas phenylalanine ethyl ester was slightly more reactive with the modified than with the native enzyme. The pH-rate profiles of acetyl-L-phenylalanine ethyl ester and tryptophan ethyl and benzyl esters were investigated in detail. Analysis of these profiles revealed three pKa values of approximately 5, 7, and 9 related to a functional carboxyl, imidazoyl, and an amino group, respectively. Since similar pKa values occur for the native enzyme, modification did not block the carboxyl corresponding to pKa 5. A mechanism is proposed for catalysis which includes both the protonated and unprotonated form of the imidazoyl (His-57) and utilizes water rather than a carboxyl (Asp-102) as the proton sink.  相似文献   

12.
The modification of the carboxyl groups of the subunits of bovine luteinizing hormone to neutral derivatives by carbodiimide-mediated coupling with glycine methyl ester has been studied. The modified alpha subunit, which has 8 residues of glycine methyl ester incorporated, will no longer recombine with native beta (hormone-specific) subunit, but the modified beta subunit, with 6 to 7 glycine methyl esters incorporated, will recombine with native alpha to yield a partially active hormone. Derivatization of the intact hormone results in dissociation to subunits together with formation of a major side product which is covalently cross-linked. Significant cross-linked product was not obtained during modification of individual subunits, thus indicating an orientation between an activated carboxyl group(s) and a nucleophile(s) in the intact hormone which favors coupling. Separation of subunits from the derivatized, noncross-linked fraction by countercurrent distribution reveals a heterogeneous preparation of the modified alpha subunit which also will not recombine with either a native or modified beta subunit. The beta subunit from the modified intact hormone was indistinguishable from the modified isolated beta subunit in amino acid composition and in ability to recombine with native alpha subunit. The results are consonant with data from this and other laboratories in which various modifications of the alpha chain, the subunit common to the glycoproteins, more seriously affect recombination than similar modifications of the beta subunits. The number of carboxyl groups modified in each subunit is compatible with but not in total agreement with assignments of amides reported from sequence studies.  相似文献   

13.
The status of free amino groups in cobrotoxin was studied by stepwise modification with trinitrobenzene sulfonate. Lys-27 was selectively modified without altering the activity of cobrotoxin. However, complete loss of activity was observed when Lys-27 and Lys-47 were trinitrophenylated, suggesting that the epsilon-amino group of Lys-47 is essential for the activity of cobrotoxin. The alpha-amino group of N-terminal leucine had no correlation with activity, demonstrated by the guanidination of the lysine residues with O-methylisourea followed by trinitrophenylation of the alpha-amino group. The carboxyl groups in cobrotoxin were modified with glycine methyl ester after activation with water-soluble carbodiimide. Six out of seven free carboxyls reacted in the absence of guanidine.HCl without altering the biological activity. When the remaining carboxyl was modified in the presence of 5 M guanidine.HCl, the resulting toxin was devoid of activity. This "buried" carboxyl is essential for activity and was identified as the gamma-carboxyl group of Glu-21.  相似文献   

14.
J A Buechler  S S Taylor 《Biochemistry》1990,29(7):1937-1943
The catalytic subunit of cAMP-dependent protein kinase typically phosphorylates protein substrates containing basic amino acids preceding the phosphorylation site. To identify amino acids in the catalytic subunit that might interact with these basic residues in the protein substrate, the enzyme was treated with a water-soluble carbodiimide, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), in the presence of [14C]glycine ethyl ester. Modification of the catalytic subunit in the absence of substrates led to the irreversible, first-order inhibition of activity. Neither MgATP nor a 6-residue inhibitor peptide alone was sufficient to protect the catalytic subunit against inactivation by the carbodiimide. However, the inhibitor peptide and MgATP together completely blocked the inhibitory effects of EDC. Several carboxyl groups in the free catalytic subunit were radiolabeled after the catalytic subunit was modified with EDC and [14C]glycine ethyl ester. After purification and sequencing, these carboxyl groups were identified as Glu 107, Glu 170, Asp 241, Asp 328, Asp 329, Glu 331, Glu 332, and Glu 333. Three of these amino acids, Glu 331, Glu 107, and Asp 241, were labeled regardless of the presence of substrates, while Glu 333 and Asp 329 were modified to a slight extent only in the free catalytic subunit. Glu 170, Asp 328, and Glu 332 were all very reactive in the apoenzyme but fully protected from modification by EDC in the presence of MgATP and an inhibitor peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Flavodoxin from the nitrogen-fixing cyanobacteria Anabaena PCC 7119 forms an electron-transfer complex with ferredoxin--NADP+ reductase (FNR) from the same organism. The complex is mainly governed by electrostatic interactions between side-chain amino groups of the reductase and carboxyl residues of flavodoxin. In order to localize the binding site on flavodoxin, chemical modification of its carboxyl groups has been carried out. Treatment of flavodoxin with a water-soluble carbodiimide, N-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), in the presence of a nucleophile, glycine ethyl ester, caused a time-dependent modification of the protein that is responsible for the loss of its ability to participate as electron carrier in the photoreduction of NADP+ by chloroplast membranes, and also in NADPH--cytochrome-c reductase activity, by about 85%. Nevertheless, the ability of flavodoxin to receive electrons from the reducing side of photosystem I was much less affected. The inhibition was enhanced at low pH, suggesting that carboxylic acid groups were the target of chemical modification. Treated flavodoxin failed to form covalent complexes with FNR and the dissociation constant for the non-covalent complex with FNR was fourfold higher. After tryptic digestion of a sample of flavodoxin modified by EDC in the presence of [1-14C]glycine ethyl ester, two major radioactive peptides were isolated. The first protein fragment contained three carboxylic residues (Asp123, Asp126 and Asp129), corresponding to the region where long-chain flavodoxins show an insert compared to short-chain flavodoxins. The second peptide corresponded to a similar region, either in the amino acid sequence or in the three-dimensional structure of the protein and also containing three carboxyl groups (Asp144, Glu145 and Asp146). Four of these carboxyl groups (Asp123, Asp126, Asp144 and Asp146) are highly conserved in all long-chain flavodoxins, suggesting that they could play an essential role in substrate recognition.  相似文献   

16.
The reaction of the water-soluble carbodimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), with active papain in the presence of the nucleophile ethyl glycinate results in an irreversible inactivation of the enzyme. This inactivation is accompanied by the derivatization of the catalytically essential thiol group of the enzyme (Cys-25) and by the modification of 6 out of 14 of papain's carboxyl groups and up to 9 out of 19 of the enyzme's tyrosyl residues. No apparent irreversible modification of histidine residues is observed. Mercuripapain is also irreversibly inactivated by EDC/ethyl glycinate, again with the concomitant modification of 6 carboxyl groups, up to 10 tyrosyl residues, and no histidine residues; but in this case there is no thiol derivatization. Treatment of either modified native papain or modified mercuripapain with hydroxylamine results in the complete regeneration of free tyrosyl residues but does not restore any activity. The competitive inhibitor benzamidoacetonitrile substantially protects native papain against inactivation and against the derivatization of the essential thiol group as well as 2 of the 6 otherwise accessible carboxyl groups. The inhibitor has no effect upon tyrosyl modification. These findings are discussed in the context of a possible catalytic role for a carboxyl group in the active site of papain.  相似文献   

17.
Treatment of spinach ferredoxin with glycine ethyl ester in the presence of a water soluble carbodiimide resulted in the modification of 3-4 carboxyl groups and decreased the ability of ferredoxin to participate in NADP photoreduction by chloroplast membranes by about 80%. The ability of the modified ferredoxin to receive electrons from the reducing side of Photosystem I was relatively unaffected. These findings suggest that the modified ferredoxin is unable to interact with ferredoxin:NADP reductase. This has been verified by demonstration that the modified ferredoxin fails to produce difference spectra typical of a ferredoxin-ferredoxin:NADP reductase complex when added to ferredoxin:NADP reductase.  相似文献   

18.
Assembly properties of tubulin after carboxyl group modification   总被引:3,自引:0,他引:3  
By chemically modifying carboxyl groups we have investigated the role of the highly acidic COOH-terminal domains of alpha- and beta-tubulin in regulating microtubule assembly. Using a carbodiimide-promoted amidation reaction, as many as 25 carboxyl groups were modified by the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and an amine nucleophile, [14C] glycine ethyl ester or [3H]methylamine, to assembled microtubules. Modification occurred primarily in the carboxyl-terminal region as demonstrated by limited proteolysis of modified tubulin by trypsin, chymotrypsin, subtilisin, and carboxypeptidase Y. Modified tubulin polymerized into microtubules with a critical concentration that was 15% of that for unmodified tubulin. Assembly of modified tubulin and microtubules formed from modified tubulin were less sensitive to Ca2+ and high ionic strength. Ca2+ binding studies under low ionic strength conditions indicated that modified tubulin does not contain the high affinity Ca2+ binding site. While assembly of unmodified tubulin was stimulated by Mg2+ up to 10 mM, assembly of the modified protein was inhibited by concentrations greater than 1 mM. When 24 residues were modified, polymerization was no longer stimulated by microtubule-associated proteins (MAPs) or polylysine and incorporation of high molecular weight MAPs into the polymers was reduced by about 70% compared to unmodified tubulin. These studies demonstrate that chemical modification of carboxyl groups in tubulin, most of which are localized in the COOH-terminal region, leads to an enhanced ability to polymerize and a decrease in interaction with MAPs and other positively charged species.  相似文献   

19.
The influence of chemical modification on the biological properties of the bacteriocin cloacin DF13 has been investigated. All chemical modifications resulted in the total loss of the ability of the bacteriocin to kill sensitive bacterial cells. The ability of the bacteriocin to bind to specific receptor sites on sensitive bacteria was affected by the modification of carboxyl groups with glycine ethyl ester (GEE) and by the oxidation of tryptophan residues with N-bromosuccinimide (NBS). The endoribonucleolytic activity of the bacteriocin was affected by nitration of tyrosine residues with tetranitromethane (TNM) or by the oxidation of tryptophan residues with NBS. Binding of immunity protein to the cloacin was not affected by either of these modifications.  相似文献   

20.
To determine the contribution of charged amino acids to binding with the photosystem II complex (PSII), the amino or carboxyl groups of the extrinsic 18 kDa protein were modified with N- succinimidyl propionate (NSP) or glycine methyl ester (GME) in the presence of a water-soluble carbodiimide, respectively. Based on isoelectric point shift, 4-10 and 10-14 amino groups were modified in the presence of 2 and 4 mM NSP, respectively. Similarly, 3-4 carboxyl groups were modified by reaction with 100 mM GME. Neutralization of negatively charged carboxyl groups with GME did not alter the binding activity of the extrinsic 18 kDa protein. However, the NSP-modified 18 kDa protein, in which the positively charged amino groups had been modified to uncharged methyl esters, failed to bind with the PSII membrane in the presence of the extrinsic 23 kDa protein. This defect can not be attributed to structural or conformational alterations imposed by chemical modification, as the fluorescence and circular dichroism spectra among native, GME- and NSP-modified extrinsic 18 kDa proteins were similar. Thus, we have concluded that the positive charges of lysyl residues in the extrinsic 18 kDa protein are important for its interaction with PSII membranes in the presence of the extrinsic 23 kDa protein. Furthermore, it was found that the negative charges of carboxyl groups of this protein did not participate in binding with the extrinsic 23 kDa protein associated with PSII membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号