首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The RCS rat is a widely studied model of recessively inherited retinal degeneration. The genetic defect, known as rdy (retinal dystrophy), results in failure of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segment membranes. We previously used positional cloning and in vivo genetic complementation to demonstrate that Mertk is the gene for rdy. We have now used a rat primary RPE cell culture system to demonstrate that the RPE is the site of action of Mertk and to obtain functional evidence for a key role of Mertk in RPE phagocytosis. We found that Mertk protein is absent from RCS, but not wild-type, tissues and cultured RPE cells. Delivery of rat Mertk to cultured RCS RPE cells by means of a recombinant adenovirus restored the cells to complete phagocytic competency. Infected RCS RPE cells ingested exogenous outer segments to the same extent as wild-type RPE cells, but outer segment binding was unaffected. Mertk protein progressively co-localized with outer segment material during phagocytosis by primary RPE cells, and activated Mertk accumulated during the early stages of phagocytosis by RPE-J cells. We conclude that Mertk likely functions directly in the RPE phagocytic process as a signaling molecule triggering outer segment ingestion.  相似文献   

2.
In the dystrophic pigmented Royal College of Surgeons (RCS) rat, the retinal pigment epithelium (RPE) has a diminished capacity to phagocytose shed photoreceptor outer segments (ROS). An alteration in phagocytic recognition or ligand-receptor interactions between the RPE and ROS's could contribute to this defect. To this end, we have examined whether or not RPE lectin receptors are implicated in phagocytosis in the normal and dystrophic rat RPE by comparing differences in phagocytic uptake of lectin-coated beads. To test this, the following lectins were bound either indirectly to sugar-coated latex beads or directly to activated beads: Concanavalin A (conA), specific for mannose; Ulex europeus (ULEX), specific for fucose; Lens culinaris (LcH), specific for mannose; and wheat germ agglutinin (WGA), specific for N-acetyl glucosamine and sialic acid. The distribution of the lectin binding around beads was visualized and confirmed using lectin-Ferritin conjugates. Lectin-coated beads were fed to normal and dystrophic pigmented RPE tissue explants to determine differences in phagocytic uptake. We found that whether beads were directly or indirectly coated, similar results were obtained, but that there were differences in uptake of two types of lectin-coated beads by dystrophic as compared with normal animals. The dystrophic RPE phagocytosed greater numbers of conA-mannose beads (6.9/cell) than the normal RPE (3.6/cell). LcH-mannose beads were also phagocytosed by dystrophic (2.7/cell) but not by the normal (0/cell). A similar number of ULEX-fucose beads were taken up by dystrophic (3.8/cell) and normal (3.4/cell) RPE and neither took up WGA-N-acetyl glucosamine beads (0/cell). These results showing that the dystrophic RPE takes up greater numbers of conA and LcH-coated beads than the normal RPE suggest that a ligand-receptor interaction involving mannose may contribute to this difference in phagocytic uptake.  相似文献   

3.
Unlike other hamster phagocytes, hamster pulmonary macrophages (PM) avidly ingest albumin-coated latex particles in the absence of serum. They also possess a highly specific cell surface antigen. To evaluate the relationship between these two characteristics, PM were incubated with mouse monoclonal antibody directed against the PM antigen. After unbound antibody was removed, the amount of bound antibody and the phagocytic capability of PM were measured by flow cytometry and fluorescence microscopy. Maximum antibody binding produced a 25% inhibition of ingestion. Particle attachment was not affected. This effect was antigen specific, since neither a nonspecific mouse myeloma protein of the same subclass nor a mouse antibody that bound to another hamster surface antigen had any effect on binding or ingestion. If antigen-specific F(ab')2 fragments were introduced both before and during the period of phagocytosis, the inhibition of particle ingestion approached 100%. Particle binding increased at low F(ab')2 concentrations but declined at higher concentrations. Because calcium may play a role in the ingestion process, the effect of antibody on 45Ca uptake was evaluated. It was observed that antigen-specific F(ab')2 fragments stimulated 45Ca uptake, whereas control antibodies did not. These results suggest that the antigen reacting with our anti-hamster PM monoclonal antibody is involved in immune opsonin-independent phagocytosis and that calcium participates in this phagocytic process.  相似文献   

4.
Finnemann SC 《The EMBO journal》2003,22(16):4143-4154
Daily alphavbeta5 integrin-dependent phagocytosis of spent photoreceptor outer segment fragments by the retinal pigment epithelium (RPE) is critical for retinal function. This study identifies a key role for focal adhesion kinase (FAK) in RPE phagocytosis. Particle binding increases FAK complex formation with alphavbeta5 receptors at the apical, phagocytic RPE surface and activates FAK. Subsequent particle engulfment coincides with dissociation of activated FAK from alphavbeta5. Mutant FAK retaining focal adhesion targeting but lacking kinase activity interferes with recruitment of full-length FAK to alphavbeta5 and abrogates FAK activation in response to RPE phagocytic challenge. Such inhibition of FAK signaling has no effect on alphavbeta5-dependent binding of particles but blocks their engulfment. Conversely, FAK re-expression promotes particle engulfment by FAK null fibroblasts. Selective ligation of alphavbeta5 receptors at the apical RPE surface is sufficient to phosphorylate and mobilize FAK. Furthermore, FAK phagocytic signaling is independent of the internalization receptor MerTK. In contrast, inhibition of FAK signaling diminishes MerTK phosphorylation. These results demonstrate that FAK provides an essential link between binding and engulfment mechanisms of integrin-mediated phagocytosis.  相似文献   

5.
6.
Phagocytosis is a critical process to maintain tissue homeostasis. In the retina, photoreceptor cells renew their photoexcitability by shedding photoreceptor outer segments (POSs) in a diurnal rhythm. Shed POSs are phagocytosed by retinal pigment epithelial (RPE) cells to prevent debris accumulation, retinal degeneration, and blindness. Phagocytosis ligands are the key to understanding how RPE recognizes shed POSs. Here, we characterized mesoderm development candidate 2 (Mesd or Mesdc2), an endoplasmic reticulum (ER) chaperon for low-density lipoprotein receptor-related proteins (LRPs), to extrinsically promote RPE phagocytosis. The results showed that Mesd stimulated phagocytosis of fluorescence-labeled POS vesicles by D407 RPE cells. Ingested POSs were partially degraded within 3 h in some RPE cells to dispense undegradable fluorophore throughout the cytoplasm. Internalized POSs were colocalized with phagosome biomarker Rab7, suggesting that Mesd-mediated engulfment is involved in a phagocytosis pathway. Mesd also facilitated phagocytosis of POSs by primary RPE cells. Mesd bound to unknown phagocytic receptor(s) on RPE cells. Mesd was detected in the cytoplasm, but not nuclei, of different retinal layers and is predominantly expressed in the ER-free cellular compartment of POSs. Mesd was not secreted into medium from healthy cells but passively released from apoptotic cells with increased membrane permeability. Released Mesd selectively bound to the surface of POS vesicles and apoptotic cells, but not healthy cells. These results suggest that Mesd may be released from and bind to shed POSs to facilitate their phagocytic clearance.  相似文献   

7.
Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface.  相似文献   

8.
In this paper the possible involvement of the mannose-receptor on the non-specific recognition and phagocytosis of heat killed yeast cells (Saccharomyces cerevisiae) by gilthead seabream (Sparus aurata L.) head-kidney leucocytes was established by studying the ability of different sugars to inhibit the uptake of the yeast cells by leucocytes. Leucocytes were preincubated for 30min with different concentrations of sugar (alpha-mannan, d-mannose, d-fucose, l-fucose, d-glucose, d-glucosamine and n-acetyl-glucosamine, all of them described as specific ligands of the vertebrate mannose-receptor) and afterwards incubated with FITC-labelled yeast cells for phagocytosis assays. The phagocytic ability (percentage of cells with one or more ingested yeast cells within the total cell population) and capacity (number of ingested yeast cells per cell) of leucocytes was analysed by flow cytometry. The results demonstrate the potential existence of a specific receptor-sugar or receptor-yeast cell binding process, which was saturable, specific and dose-dependent. More specifically, when leucocytes were preincubated with appropriate doses of d-mannose, d- or l-fucose, d-glucose or n-acetyl-glucosamine the phagocytosis of yeast cells by head-kidney leucocytes was partially blocked. Seabream leucocytes were also preincubated with chloroquine, a lysosomotropic drug which downregulates (in a nonspecific manner) the expression of mannose-receptors in mammals, before phagocytosis assays were performed. The results demonstrated that the phagocytosis of yeast was completely blocked by this substance. The overall results seem to corroborate the presence of the mannose-receptor in seabream phagocytes, which is involved in the non-specific binding and phagocytosis of yeast cells by head-kidney leucocytes.  相似文献   

9.
We have investigated the phagocytic activity and the production of reactive oxygen species (ROS) by hemocytes from the cattle tick Boophilus microplus. Two main types of hemocytes were detected in tick hemolymph: plasmatocytes and granulocytes. The plasmocytes were the most abundant cells, being responsible for the in vivo phagocytosis of yeast. ROS production was evaluated by luminol-amplified luminescence and phenol red oxidation. The luminescence increased when hemocytes were incubated with bacteria, zymosan, or phorbol 12-miristate 13-acetate (PMA). The luminescence was inhibited by superoxide dismutase and catalase, which are antioxidant enzymes that remove superoxide and hydrogen peroxide, respectively. The phenol red oxidation assay also showed an increase in the level of hydrogen peroxide produced by hemocytes stimulated with bacteria and PMA. Taken all together, our data indicate that tick hemocytes are able to produce ROS during the phagocytic process similarly to vertebrate phagocytes.  相似文献   

10.
Methodological aspects of flow-cytometric evaluation of the phagocytic properties of equine neutrophils were elucidated. The kinetics of attachment and ingestion were studied, and the phagocytic process was more rapidly completed when serum-opsonized yeast cells were used than with use of IgG-opsonized yeast cells. Trypan blue was successfully used to quench fluorescence of non-ingested yeast cells. There were only minor differences in the kinetics of phagocytosis between quenched and un-quenched samples, indicating that attachment is rapidly followed by ingestion. Trypan blue quenching caused loss of cells with light scattering properties of granulocytes, although this did not affect the determined frequencies of truly phagocytic neutrophils. Aggregation of yeast cells proved to be a disturbance but not an obstacle to the determination of frequencies of actively phagocytic cells. Flow cytometry is well suited for studies of phagocytosis of yeast cells by equine neutrophils, and the trypan blue quenching provides a means of eliminating false-positive events due to aggregation of yeast cells. The main advantage of the flow-cytometric method is the possibility of rapid processing of a large number of samples, making the method useful for studies of herds.  相似文献   

11.
Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition.  相似文献   

12.
Macrophages from the gastrophod mollusk Otala lactea are capable of in vitro recognition and phagocytosis of foreign particles such as yeast, mammalian erythrocytes, and bacteria. The degree of intensity of the phagocytic response, in certain instances, is governed by the surface characteristics of the particle in question as well as by the presence of opsonic factors.Hemagglutinins have been implicated as opsonins in certain invertebrates, including mollusks. Otala lacks serum lectins; however, its hemolymph stimulates phagocytosis of formalized yeast but not erythrocytes and bacteria. Hemagglutinin-containing extracts of Otala albumin gland were shown to opsonize formalized red cells. The rate of ingestion of the bacteria used in this study by Otala hemocytes was variable and was not influenced by the presence of hemolymph in the medium.  相似文献   

13.
Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.  相似文献   

14.
《The Journal of cell biology》1983,97(5):1515-1523
The binding and phagocytosis of fibronectin (pFN)-coated latex beads by baby hamster kidney (BHK) cells was studied as a function of fibronectin concentration and bead diameter. Cells were incubated with radioactive pFN-coated beads, and total bead binding (cell surface or ingested) was measured as total radioactivity associated with the cells. Of the bound beads, those that also were phagocytosed were distinguished by their insensitivity to release from the cells by trypsin treatment. In continuous incubations, binding of pFN-coated beads to cells occurred at 4 degrees C or 37 degrees C, but phagocytosis was observed only at 37 degrees C. In addition, degradation of 3H-pFN from ingested beads occurred at 37 degrees C, as shown by the release of trichloroacetic acid-soluble radioactivity into the incubation medium. When the fibronectin density on the beads was varied, binding at 4 degrees C and ingestion at 37 degrees C were found to have the same dose-response dependencies, which indicated that pFN densities that permitted bead binding were sufficient for phagocytosis to occur. The fibronectin density for maximal binding of ingestion was approximately 250 ng pFN/cm2. When various sized beads (0.085-1.091 micron), coated with similar densities of pFN, were incubated with cells at 4 degrees C, no variation in binding as a function of bead size was observed. Under these conditions, the absolute amount of pFN ranged from less than 100 molecules on the 0.085-micron beads to greater than 15,000 molecules on the 1.091-micron beads. Based upon these results it can be concluded that the critical parameter controlling fibronectin-mediated binding of latex beads by BHK cells is the spacing of the pFN molecules on the beads. Correspondingly, it can be suggested that the spacing between pFN receptors on the cell surface that is optimal for multivalent interactions to occur is approximately 18 nM. When phagocytosis of various sized beads was compared, it was found that the largest beads were phagocytosed slightly better (two fold) than the smallest beads. This occurred both in continuous incubations of cells with beads and when the beads were prebound to the cells. Finally, the kinetic constants for the binding of 0.085 microM pFN-coated beads to the cells were analyzed. There appeared to be approximately 62,000 binding sites and the KD was 4.03 X 10(-9) M. Assuming a bivalent interaction, it was calculated that BHK cells have approximately 120,000 pFN receptors/cell and the binding affinity between pFN and its receptor is approximately 6 X 10(-5) M.  相似文献   

15.
Accumulation of indigestible lipofuscin and decreased mitochondrial energy production are characteristic age-related changes of post-mitotic retinal pigment epithelial (RPE) cells in the human eye. To test whether these two forms of age-related impairment have interdependent effects, we quantified the ATP-dependent phagocytic function of RPE cells loaded or not with the lipofuscin component A2E and inhibiting or not mitochondrial ATP synthesis either pharmacologically or genetically. We found that physiological levels of lysosomal A2E reduced mitochondrial membrane potential and inhibited oxidative phosphorylation (OXPHOS) of RPE cells. Furthermore, in media with physiological concentrations of glucose or pyruvate, A2E significantly inhibited phagocytosis. Antioxidants reversed these effects of A2E, suggesting that A2E damage is mediated by oxidative processes. Because mitochondrial mutations accumulate with aging, we generated novel genetic cellular models of RPE carrying mitochondrial DNA point mutations causing either moderate or severe mitochondrial dysfunction. Exploring these mutant RPE cells we found that, by itself, only the severe but not the moderate OXPHOS defect reduces phagocytosis. However, sub-toxic levels of lysosomal A2E are sufficient to reduce phagocytic activity of RPE with moderate OXPHOS defect and cause cell death of RPE with severe OXPHOS defect. Taken together, RPE cells rely on OXPHOS for phagocytosis when the carbon energy source is limited. Our results demonstrate that A2E accumulation exacerbates the effects of moderate mitochondrial dysfunction. They suggest that synergy of sub-toxic lysosomal and mitochondrial changes in RPE cells with age may cause RPE dysfunction that is known to contribute to human retinal diseases like age-related macular degeneration.  相似文献   

16.
Summary Mytilus hemolymph was found to contain an agglutinin which could be inhibited by mucin. The agglutinin was isolated by affinity chromatography using neuraminidase-treated mucin/Sepharose.In vitro phagocytosis experiments revealed that only about 5% of washed hemocytes phagocytosed yeast cells suspended in a Tris-buffered NaCl-solution, whereas yeast suspended in hemolymph was normally ingested by more than 50% of the hemocytes. This relatively high phagocytic activity was shown to depend on the presence of two serum factors: When purified agglutinin was added to saline-suspended yeast, phagocytosis rates returned to normal, demonstrating opsonizing properties of the purified agglutinin. — On the other hand, addition of Ca++-ions to saline caused an increase of the phagocytic activity of hemocytes. This was interpreted to indicate the activation of divalent cation-dependent recognition molecules at the hemocyte surface. The function of these postulated recognition factors was demonstrated by phagocytosis inhibition tests. Their location at the hemocyte membrane became evident by binding of specific antiagglutinin IgG purified by help of an agglutinin/Sepharose column from an antiserum raised againstMytilus serum proteins. Consequently, humoral as well as cell bound agglutinin molecules are involved in the attachment of yeast cells toMytilus hemocytes which subsequently internalize foreign cells.Abbreviations DAB dimethylamino benzaldehyde - PO peroxidase - IgG immunoglobulin G  相似文献   

17.
Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing Rubcn, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.  相似文献   

18.
The influence of cell cycling on the density and binding properties of IgG2a Fc receptors and their associated antibody-dependent phagocytic activity was investigated with the P388D1 murine macrophage cell line. Unseparated macrophages and subpopulations of elutriated macrophages, enriched for cells in G1, S, and G2 + M phases were compared to detect possible differences in IgG2a-dependent phagocytosis. Suspensions of G2 + M phase cells were appreciably enhanced in phagocytic activity over G1-phase cells, which were less phagocytic than unseparated macrophage populations. An analysis of the binding of 125I-IgG2a myeloma protein disclosed that the IgG2a Fc receptor avidity remained essentially unchanged during cell cycle traverse, whereas the number of IgG2a Fc receptors more than doubled as cells cycled from G1 to G2 + M (1.5 X 10(5) vs 3.4 X 10(5) receptors per cell). With their increased size relative to G1 cells, and the resultant increase in receptor number, G2 phase cells should have more productive collisions with the antibody-coated target cells and greater phagocytic capacity.  相似文献   

19.
Sporothrix schenckii is a human pathogen that causes sporotrichosis, a cutaneous subacute or chronic mycosis. Little is known about the innate immune response and the receptors involved in host recognition and phagocytosis of S. schenckii. Here, we demonstrate that optimal phagocytosis of conidia and yeast is dependent on preimmune human serum opsonisation. THP-1 macrophages efficiently ingested opsonised conidia. Competition with d-mannose, methyl α-d-mannopyranoside, d-fucose, and N-acetyl glucosamine blocked this process, suggesting the involvement of the mannose receptor in binding and phagocytosis of opsonised conidia. Release of TNF-α was not stimulated by opsonised or non-opsonised conidia, although reactive oxygen species (ROS) were produced, resulting in the killing of conidia by THP-1 macrophages. Heat inactivation of the serum did not affect conidia internalization, which was markedly decreased for yeast cells, suggesting the role of complement components in yeast uptake. Conversely, release of TNF-α and production of ROS were induced by opsonised and non-opsonised yeast. These data demonstrate that THP-1 macrophages respond to opsonised conidia and yeast through different phagocytic receptors, inducing a differential cellular response. Conidia induces a poor pro-inflammatory response and lower rate of ROS-induced cell death, thereby enhancing the pathogen's survival.  相似文献   

20.
Two mechanisms have been considered for particle phagocytosis. According to the zipper mechanism, ingestion occurs by sequential engagement of a phagocyte's membrane against the particle surface, and pseudopod advance proceeds no further than receptor-ligand interactions permit. In contrast, in the trigger mechanism particle binding initiates an all-or-none phagocytic response. Although the weight of experimental evidence has favoured the zipper mechanism, recent observations of bacterial entry into epithelial cells and macrophages indicate an indiscriminate, triggered response. This prompts a reconsideration of the underlying mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号