首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serotonin (5-HT) and the neuropeptide Phe-Met-Arg-Phe-amide (FMRFa) modulate synaptic efficacy of sensory neurons (SNs) of Aplysia in opposite directions and for long duration. Both long-term responses require changes in mRNA and protein synthesis. The SN-specific neuropeptide, sensorin A, is a gene product that appears to be increased by 5-HT and decreased by FMRFa. We examined whether changes in sensorin A mRNA levels in the cell body and neurites of SNs accompany long-term facilitation and depression. Both 5-HT and FMRFa evoked rapid changes in sensorin A mRNA levels in the SN cell bodies: an increase with 5-HT and a decrease with FMRFa. Parallel changes in sensorin A mRNA levels in SN neurites were detected 2 h and 4 h later. These rapid changes in mRNA expression and net export required the presence of the appropriate target motor cell L7. The neuromodulators failed to produce changes in mRNA expression or export when SNs were cultured alone or with the inappropriate target cell L11. The changes in mRNA expression were transient because mRNA levels returned to control values 24 h after treatment, while synaptic efficacy remained altered by the respective treatments. These results indicate that two neuromodulators produce distinct, but transient, target-dependent effects on expression and export of a cell-specific mRNA that correlate with changes in synaptic plasticity.  相似文献   

2.
3.
Serotonin (5‐HT) and the neuropeptide Phe‐Met‐Arg‐Phe‐amide (FMRFa) modulate synaptic efficacy of sensory neurons (SNs) of Aplysia in opposite directions and for long duration. Both long‐term responses require changes in mRNA and protein synthesis. The SN‐specific neuropeptide, sensorin A, is a gene product that appears to be increased by 5‐HT and decreased by FMRFa. We examined whether changes in sensorin A mRNA levels in the cell body and neurites of SNs accompany long‐term facilitation and depression. Both 5‐HT and FMRFa evoked rapid changes in sensorin A mRNA levels in the SN cell bodies: an increase with 5‐HT and a decrease with FMRFa. Parallel changes in sensorin A mRNA levels in SN neurites were detected 2 h and 4 h later. These rapid changes in mRNA expression and net export required the presence of the appropriate target motor cell L7. The neuromodulators failed to produce changes in mRNA expression or export when SNs were cultured alone or with the inappropriate target cell L11. The changes in mRNA expression were transient because mRNA levels returned to control values 24 h after treatment, while synaptic efficacy remained altered by the respective treatments. These results indicate that two neuromodulators produce distinct, but transient, target‐dependent effects on expression and export of a cell‐specific mRNA that correlate with changes in synaptic plasticity. © 2000 John Wiley & Sons, Inc. J Neurobiol 46: 41–47, 2001  相似文献   

4.
We have used the gill- and siphon-withdrawal reflex of Aplysia californica to determine the morphological basis of the prolonged changes in synaptic effectiveness that underlie long-term habituation and sensitization. We have found that clear structural changes accompany behavioral modification and have demonstrated that these can be detected at the level of identified sensory neuron synapses, a critical site of plasticity for the short-term forms of both types of learning. These alterations occur at two different levels of synaptic organization and include (1) changes in focal regions of synaptic membrane specialization--the number, size and vesicle complement of sensory neuron active zones are larger in sensitized animals and smaller in habituated animals compared with controls--and (2) a parallel but more dramatic and global trend involving modulation of the total number of presynaptic varicosities per sensory neuron. Quantitative analysis of the time course over which these structural alterations occur during sensitization has further demonstrated that changes in the number of varicosities and active zones persist in parallel with the behavioral retention of the memory. This increase in the number of sensory neuron synapses during long-term sensitization in Aplysia is similar to changes in the number of synapses in the mammalian brain following various forms of environmental manipulations and learning (Greenough, 1984). Therefore learning may involve a form of neuronal growth across a broad segment of the animal kingdom, thereby suggesting a role for structural synaptic plasticity during long-term behavioral modifications.  相似文献   

5.
Two second messenger pathways, one that uses the cAMP-dependent protein kinase A (PKA), the other that uses protein kinase C (PKC), have been found to contribute to the short-term presynaptic facilitation of the connections between the sensory neurons in Aplysia and their target cells, the interneurons and motor neurons of the gill-withdrawal reflex. To study their relative contributions as a function of the previous history of the neuron's activity, we have examined the effects of inhibiting PKA (using Rp-cAMPS) and PKC (using H7) on the short-term facilitation of spontaneous release as well as of the evoked release induced by serotonin at nondepressed, partially depressed, and highly depressed synapses. Our results suggest that whereas activation of PKA is sufficient to trigger the facilitation of nondepressed synapses, activation of both PKA and PKC is required to facilitate depressed synapses, with the contribution of PKC becoming progressively more important as synaptic transmission becomes more depressed.  相似文献   

6.
Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin resulting from 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals.  相似文献   

7.
The closer muscle of the crab, Chionoecetes, has at least two classes of excitatory neuromuscular synapses. In one class of synapses an action potential depolarizing the synaptic region releases much more transmitter if it has been preceded recently by another action potential. The other class of synapses shows this property, called facilitation, to a far lesser extent. Immediately after one conditioning stimulus the level of facilitation is similar in both classes. The rate of the ensuing decay of the facilitation is the critical factor differentiating the two classes of synapses. The relationship between external Ca++ concentration and transmitter release is similar for both classes of synapses. The slope of a double logarithmic plot of this relationship varies from 3.1 between 5 and 10 mM Ca++ to 0.9 between 30 and 40 mM Ca++. Facilitation does not significantly change when tested in external Ca++ concentrations ranging from 7 to 30 mM. The extracellularly recorded nerve terminal action potential does not increase in amplitude during facilitation. The results suggest that the mechanism of synaptic facilitation is similar for both classes of synapses and occurs after the stage in transmitter release involving Ca++.  相似文献   

8.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.  相似文献   

9.
The purinergic P2X(7) receptor (P2X(7)R) can mediate glutamate release from cultured astrocytes. Using patch clamp recordings, we investigated whether P2X(7)Rs have the same action in hippocampal astrocytes in situ. We found that 2- and 3-O-(4-benzoylbenzoyl)ATP (BzATP), a potent, although unselective P2X(7)R agonist, triggers two different glutamate-mediated responses in CA1 pyramidal neurons; they are transient inward currents, which have the kinetic and pharmacological properties of previously described slow inward currents (SICs) due to Ca(2+)-dependent glutamate release from astrocytes, and a sustained tonic current. Although SICs were unaffected by P2X(7)Rs antagonists, the tonic current was inhibited, was amplified in low extracellular Ca(2+), and was insensitive to glutamate transporter and hemichannel inhibitors. BzATP triggered in astrocytes a large depolarization that was inhibited by P2X(7)R antagonists and amplified in low Ca(2+). In low Ca(2+) BzATP also induced lucifer yellow uptake into a subpopulation of astrocytes and CA3 neurons. Our results demonstrate that purinergic receptors other than the P2X(7)R mediate glutamate release that evokes SICs, whereas activation of a receptor that has features similar to the P2X(7)R, mediates a sustained glutamate efflux that generates a tonic current in CA1 neurons. This sustained glutamate efflux, which is potentiated under non-physiological conditions, may have important pathological actions in the brain.  相似文献   

10.
The mammalian dorsal cochlear nucleus (DCN) is considered to contribute to the localization of the sound sources. Fusiform cells (FCs), principal projection neurons in the DCN, integrate two excitatory inputs from auditory nerve fibers (ANFs) and parallel fibers (PFs). Although an immunohistochemical study suggested presence of GABAB receptors at excitatory presynaptic terminals in the DCN, it has not been elucidated how GABAB receptors modulate the synaptic transmission to FCs. Here, we examined effects of baclofen on the transmission in vitro. Baclofen reduced both PF-EPSC and ANF-EPSC by reducing transmitter releases, and it enhanced the facilitation in PF-FC synapses and prevented the depression in ANF-FC synapses. The enhancement and prevention were prominent during high-frequency (50 Hz) synaptic input, suggesting the activation of presynaptic GABAB receptors may optimize both PF-FC and ANF-FC synapses for high-frequency transmission. Postsynaptic GABAB receptors activated GIRK current and would further modulate the activity of FCs.  相似文献   

11.
Stimulation of the phasic (fast) motor axon of the isolated crayfish claw preparation at relatively low frequency (0.1 Hz) leads to depression of the excitatory junction potential (EJP) recorded from single muscle fibers. When the same stimulation is delivered following depression of the EJP at a higher frequency (5 Hz), a potentiated EJP appears, which is more resistant to low frequency depression. The potentiation appears to be analogous to "long-term facilitation" observed after stimulation of a tonic motor axon in crayfish and crabs. Long-term facilitation can be detected in preparations made from claws of animals in which the phasic motoneuron was stimulated at 5 Hz for 2 h in situ. This effect lasts for at least one day after one conditioning trial. Long-term facilitation is observed after stimulation of decentralized axons in situ, indicating that the change is attributable to local changes in terminal regions of the axon, and does not require the cell body. When electrodes are implanted in situ and the phasic motoneuron stimulated at 5 Hz for 2 h each day, synaptic depression becomes less pronounced and initial EJP amplitude becomes smaller over a period of several days. The latter changes, which adapt the neuron to a more tonic activity pattern, usually require several days for completion. Adaptation of fatigability occurs more rapidly than adaptation of initial EJP amplitude, and once established, remains for many days without further superimposed activity. Long-term adaptation does not occur in decentralized axons. Long-term facilitation and long-term adaptation are different responses of the neuron to enhanced activity. The former can occur in isolated or decentralized axons and leads to enhancement of EJP amplitude for a period of several hours to at least one day after a single episode of conditioning. The latter requires more time to be established, and leads to reduction of initial EJP amplitude and to lessened fatigability which persists for many days.  相似文献   

12.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein‐synthesis dependent long‐term facilitation (LTF) produced by 5‐HT that decays rapidly. Changes in expression of a SN‐specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5‐HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5‐HT was blocked by anisomycin or was reversed 48 h after 5‐HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long‐term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 275–286, 2003  相似文献   

13.
14.
15.
Mathew SS  Hablitz JJ 《PloS one》2011,6(2):e17311

Background

NMDA receptors are traditionally viewed as being located postsynaptically, at both synaptic and extrasynaptic locations. However, both anatomical and physiological studies have indicated the presence of NMDA receptors located presynaptically. Physiological studies of presynaptic NMDA receptors on neocortical GABAergic terminals and their possible role in synaptic plasticity are lacking.

Methodology/Principal Findings

We report here that presynaptic NMDA receptors are present on GABAergic terminals in developing (postnatal day (PND) 12-15) but not older (PND21-25) rat frontal cortex. Using MK-801 in the recording pipette to block postsynaptic NMDA receptors, evoked and miniature IPSCs were recorded in layer II/III pyramidal cells in the presence of AMPA/KA receptor antagonists. Bath application of NMDA or NMDA receptor antagonists produced increases and decreases in mIPSC frequency, respectively. Physiologically patterned stimulation (10 bursts of 10 stimuli at 25 Hz delivered at 1.25 Hz) induced potentiation at inhibitory synapses in PND12-15 animals. This consisted of an initial rapid, large increase in IPSC amplitude followed by a significant but smaller persistent increase. Similar changes were not observed in PND21-25 animals. When 20 mM BAPTA was included in the recording pipette, potentiation was still observed in the PND12-15 group indicating that postsynaptic increases in calcium were not required. Potentiation was not observed when patterned stimulation was given in the presence of D-APV or the NR2B subunit antagonist Ro25-6981.

Conclusions/Significance

The present results indicate that presynaptic NMDA receptors modulate GABA release onto neocortical pyramidal cells. Presynaptic NR2B subunit containing NMDA receptors are also involved in potentiation at developing GABAergic synapses in rat frontal cortex. Modulation of inhibitory GABAergic synapses by presynaptic NMDA receptors may be important for proper functioning of local cortical networks during development.  相似文献   

16.
17.
The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.  相似文献   

18.
Huntington's disease (HD) is caused by an expansion of a polyglutamine (polyQ) tract within huntingtin (htt) protein. To examine the cytotoxic effects of polyQ-expanded htt, we overexpressed an enhanced green fluorescent protein (EGFP)-tagged N-terminal fragment of htt with 150 glutamine residues (Nhtt150Q-EGFP) in Aplysia neurons. A combined confocal and electron microscopic study showed that Aplysia neurons expressing Nhtt150Q-EGFP displayed numerous abnormal aggregates (diameter 0.5-5 microm) of filamentous structures, which were formed rapidly (approximately 2 h) but which were sustained for at least 18 days in the cytoplasm. Furthermore, the overexpression of Nhtt150Q-EGFP in sensory cells impaired 5-hydroxytryptamine (5-HT)-induced long-term synaptic facilitation in sensori-motor synapses without affecting basal synaptic strength or short-term facilitation. This study demonstrates the stability of polyQ-based aggregates and their specific effects on long-term synaptic plasticity.  相似文献   

19.
Abnormal aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils is a hallmark of type 2 diabetes. In this study, we investigated the initial oligomerization and subsequent addition of monomers to growing aggregates of human IAPP at the residue-specific level using NMR, atomic force microscopy, mass spectroscopy, and computational simulations. We found that in solution IAPPs rapidly associate into transient low-order oligomers such as dimers and trimers via interactions between histidine 18 and tyrosine 37. This initial event is proceeded by slow aggregation into higher-order spherical oligomers and elongated fibrils. In these two morphologically distinct types of aggregates IAPPs adopt structures with markedly different residual flexibility. Here we show that the anti-amyloidogenic compound resveratrol inhibits oligomerization and amyloid formation via binding to histidine 18, supporting the finding that this residue is crucial for on-pathway oligomer formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号