首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The collagen11A1 (COL11A1) gene is overexpressed in pancreatic cancer. The expression of COL11A1 protein could be involved in desmoplastic events in pancreatic cancer, but an antibody that specifically stains the COL11A1 protein is not currently available.

Methods and findings

A total of 54 pancreatic ductal adenocarcinomas (PDAC), 23 chronic pancreatitis (CP) samples, and cultured peritumoral stromal cells of PDAC (passages 3-6) were studied. Normal human pancreas tissue samples were obtained through a cadaveric organ donation program.1) Validation of COL11A1 gene overexpression by q-RT-PCR. Findings: the expression of COL11A1 gene is significantly increased in PDAC samples vs. normal and CP samples.2) Analysis of COL11A1 by immunohistochemistry using highly specific anti-proCOL11A1 antibodies. Findings: anti-proCOL11A1 stains stromal cells/cancer-associated fibroblasts (CAFs) of PDAC but it does not stain chronic benign condition (chronic pancreatitis) stromal cells, epithelial cells, or normal fibroblasts.3) Evaluation of the discrimination ability of the antibody. Findings: anti-proCOL11A1 immunostaining accurately discriminates between PDAC and CP (AUC 0.936, 95% CI 0.851, 0.981).4) Phenotypic characterization of proCOL11A1+ stromal cells co-staining with mesenchymal, epithelial and stellate cell markers on pancreatic tissue samples and cultured peritumoral pancreatic cancer stromal cells. Findings: ProCOL11A1+ cells present co-staining with mesenchymal, stellate and epithelial markers (EMT phenotype) in different proportions.

Conclusions/Significance

Detection of proCOL11A1 through immunostaining with this newly-developed antibody allows for a highly accurate distinction between PDAC and CP. Unlike other available antibodies commonly used to detect CAFs, anti-proCOL11A1 is negative in stromal cells of the normal pancreas and almost absent in benign inflammation. These results strongly suggest that proCOL11A1 is a specific marker for CAFs, and thus, anti-proCOL11A1 is a powerful new tool for cancer research and clinical diagnostics.  相似文献   

2.
The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) remains poorly understood. S100 calcium-binding protein A6 (S100A6) has been associated with PDAC; however, the effect of S100A6 on PDAC migration and invasion has not yet been explored. In this study, Panc-1 cells were transfected with a plasmid to induce overexpression of S100A6, and β-catenin was knocked down using a specific short hairpin RNA (shRNA). The wound-healing and Transwell assays demonstrated that S100A6 promoted PDAC cell migration and invasion. Furthermore, β-catenin shRNA inhibited the migration and invasion of PDAC cells. We confirmed that S100A6 induces PDAC cell migration and invasion via activation of β-catenin in vitro. Assessment of mRNA and protein levels revealed that S100A6 induces increased expression of β-catenin, N-cadherin and vimentin, and decreased expression of E-cadherin in PDAC cells. β-catenin shRNA also altered the expression of epithelial-mesenchymal transition (EMT)-related markers in PDAC cells. Specifically, expression of E-cadherin was increased, whereas expression of N-cadherin and vimentin was decreased. Finally, we demonstrated that S100A6 alters the expression of EMT-related markers via β-catenin activation. In conclusion, S100A6 induces EMT and promotes cell migration and invasion in a β-catenin-dependent manner. S100A6 may therefore represent a novel potential therapeutic target for the treatment of pancreatic cancer.  相似文献   

3.

Objectives

MAP4K5 plays an important role in regulating a range of cellular responses and is involved in Wnt signaling in hematopoietic cells. However, its functions in human malignancies have not been studied. The major objectives of this study are to examine the expression, functions and clinical significance of MAP4K5 in pancreatic ductal adenocarcinoma (PDAC).

Materials and Methods

The expression levels of MAP4K5, E-cadherin, vimentin, and carboxylesterase 2 (CES2) were examined by immunohistochemistry in 105 PDAC and matched non-neoplastic pancreas samples from our institution. The RNA sequencing data of 112 PDAC patients were downloaded from the TCGA data portal. Immunoblotting and RNA sequencing analysis were used to examine the expression of MAP4K5 and E-cadherin in pancreatic cancer cell lines. The effect of knockdown MAP4K5 using siRNA on the expression of CDH1 and vimentin were examined by Real-time RT-PCR in Panc-1 and AsPC-1 cells. Statistical analyses were performed using IBM SPSS Statistics.

Results

MAP4K5 protein is expressed at high levels specifically in the pancreatic ductal cells of 100% non-neoplastic pancreas samples, but is decreased or lost in 77.1% (81/105) of PDAC samples. MAP4K5-low correlated with the loss of E-cadherin (P = 0.001) and reduced CES2 expression (P = 0.002) in our patient populations. The expression levels of MAP4K5 mRNA directly correlated with the expression levels of CDH1 mRNA (R = 0.2490, P = 0.008) in the second cohort of 112 PDAC patients from The Cancer Genome Atlas (TCGA) RNA-seq dataset. Similar correlations between the expression of MAP4K5 and E-cadherin were observed both at protein and mRNA levels in multiple pancreatic cancer cell lines. Knockdown MAP4K5 led to decreased CDH1 mRNA expression in Panc-1 and AsPC-1 cells. MAP4K5-low correlated significantly with reduced overall survival and was an independent prognosticator in patients with stage II PDAC.

Conclusions

MAP4K5 expression is decreased or lost in majority of PDACs. The strong associations between low MAP4K5 expression and loss of E-cadherin, reduced CES2 expression and decreased overall survival may suggest an important role of MAP4K5 in epithelial-to-mesenchymal transition, chemotherapy resistance and tumor progression in pancreatic cancer. Targeting impaired MAP4K5 signaling may represent a new therapeutic strategy for pancreatic cancer.  相似文献   

4.
PMP22 is a structural protein of Schwann cells, but it also influences cell proliferation. In the present study, quantitative RT-PCR (QRT-PCR) and immunohistochemistry were used to determine PMP22 mRNA levels and to localize PMP22 in the normal pancreas (n=20), chronic pancreatitis (CP) (n=22), pancreatic ductal adenocarcinoma (PDAC) (n=31), intraductal papillary mucinous neoplasms (IPMN) (n=9), mucinous cystic tumors (MCN) (n=4), and in a panel of PanIN lesions (n=29). PMP22 mRNA levels were significantly higher in CP (3-fold) and PDAC (2.5-fold), compared to normal pancreatic tissues. PMP22 expression was restricted to nerves in the normal pancreas, while in CP and PDAC PMP22 was also expressed in PanIN lesions and in a small percentage of pancreatic cancer cells. PMP22 was weak to absent in the tumor cells of IPMNs and MCNs. PMP22 mRNA was present at different levels in cultured pancreatic cancer cells and up-regulated by transforming growth factor (TGF)-beta1 in 2 of 8 of these cell lines. In conclusion, PMP22 expression is present in both CP and PDAC tissues. Its expression in PanIN lesions and some pancreatic cancer cells in vitro and in vivo suggests a role of PMP22 in the neoplastic transformation process from the normal pancreas to pre-malignant lesions to pancreatic cancer.  相似文献   

5.
The cross-talk between tumour cells and the surrounding supporting host cells (stroma) is a key regulator of cancer growth and progression. By undertaking 2-DE analysis of laser capture microdissected malignant and stromal components of pancreatic tumours and benign ductal elements, we have identified high levels of S100A8 and S100A9 in tumour-associated stroma but not in benign or malignant epithelia. Immunohistochemical analysis (n = 71 patients) revealed strong expression of both proteins in stromal myeloid cells, subsequently identified as CD14(+)/CD68(- )monocytes/macrophages. Co-immunofluorescence revealed that S100A8 was expressed in a subset of S100A9-positive cells. Correlation of the expression of S100A8 and S100A9 to patient parameters revealed that the microenvironments of tumours which lacked expression of the tumour suppressor protein, Smad4, had significantly reduced numbers of S100A8-immunoreactive (p = 0.023) but not S100A9-immunoreactive (p = 0.21) cells. The ratio of S100A8- to S100A9-positive cells within individual tumours was significantly lower in Smad4-negative tumours than in Smad4-positive tumours (p<0.003). Pancreatitic specimens also contained S100A8- and S100A9-expressing cells, although this was not observed in regions displaying extensive fibrosis. In conclusion, our study provides an extensive analysis of S100A8 and S100A9 in pancreatic disease and highlights a potentially important relationship between pancreatic cancer cells and their surrounding microenvironment.  相似文献   

6.
Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance.  相似文献   

7.
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death in North America. Activating KRAS mutations and Smad4 loss occur in approximately 90% and 55% of PDAC, respectively. While their roles in the early stages of PDAC development have been confirmed in genetically modified mouse models, their roles in the multistep malignant transformation of human pancreatic duct cells have not been directly demonstrated. Here, we report that Smad4 represents a barrier in KRAS-mediated malignant transformation of the near normal immortalized human pancreatic duct epithelial (HPDE) cell line model. Marked Smad4 downregulation by shRNA in KRAS G12V expressing HPDE cells failed to cause tumorigenic transformation. However, KRAS-mediated malignant transformation occurred in a new HPDE-TGF-β resistant (TβR) cell line that completely lacks Smad4 protein expression and is resistant to the mito-inhibitory activity of TGF-β. This transformation resulted in tumor formation and development of metastatic phenotype when the cells were implanted orthotopically into the mouse pancreas. Smad4 restoration re-established TGF-β sensitivity, markedly increased tumor latency by promoting apoptosis, and decreased metastatic potential. These results directly establish the critical combination of the KRAS oncogene and complete Smad4 inactivation in the multi-stage malignant transformation and metastatic progression of normal human HPDE cells.  相似文献   

8.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   

9.
Epiregulin belongs to the epidermal growth factor (EGF) family of polypeptides. Previous studies have underscored the important role of the EGF family of ligands and receptors in the pathology of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). It is not known, however, whether epiregulin may also have a role in these diseases. Therefore, in the present study we investigated the expression and function of epiregulin in five pancreatic cancer cell lines and in PDAC and CP tissue samples. Epiregulin mRNA was present at high (MIA-PaCa-2 cells) or moderate levels (ASPC-1, CAPAN-1, and T3M4) in most cells, but was below detection levels in PANC-1 cells. All the cell lines exhibited a dose-dependent increase in growth in response to recombinant human epiregulin. Epiregulin mRNA levels were increased 2.1-fold in PDAC samples (P < 0.01) and 1.7-fold in CP samples (P < 0.01), when compared with the normal controls. There was no correlation between epiregulin mRNA levels and tumor stage or grade. By in situ hybridization, a moderate to intense epiregulin mRNA signal was present in most pancreatic cancer cells in PDAC. In contrast, only a weak (normal pancreas) to moderate (CP) signals were present in the ductal and acinar cells in CP. These findings suggest that epiregulin may contribute to the pathobiology of PDAC, and may also have a role in CP.  相似文献   

10.
CD90 (Thy-1) plays important roles in oncogenesis and shows potential as a candidate marker for cancer stem cells (CSCs) in various malignancies. Herein, we investigated the expression of CD90 in pancreatic adenocarcinoma (PDAC), with a comparison to normal pancreas and non-malignant pancreatic disease, by immunohistochemical (IHC) analysis of tissue microarrays containing 183 clinical tissue specimens. Statistical analysis was performed to evaluate the correlation between CD90 expression and the major clinicopathological factors after adjustment of age and gender. The IHC data showed that CD90 was significantly overexpressed in PDAC and its metastatic cancers as compared to chronic pancreatitis and benign islet tumors, while it was negative in normal pancreas and 82.7% of adjacent normal pancreas tissues. The abundant CD90 expression was predominantly present in PDAC stroma, such as fibroblasts and vascular endothelial cells, which could serve as a promising marker to distinguish pancreatic adenocarcinoma from normal pancreas and non-malignant pancreatic diseases. Double immunostaining of CD90 with CD24, a CSC marker for PDAC, showed that there was little overlap between these two markers. However, CD90+ fibroblast cells were clustered around CD24+ malignant ducts, suggesting that CD90 may be involved in the tumor-stroma interactions and promote pancreatic cancer development. Furthermore, CD90 mostly overlapped with α-smooth muscle actin (αSMA, a marker of activated pancreatic stellate cells (PSCs)) in PDAC stroma, which demonstrated that CD90+ stromal cells consist largely of activated PSCs. Double immunostaining of CD90 and a vascular endothelial cell marker CD31 demonstrated that CD90 expression on vascular endothelial cells was significantly increased in PDACs as compared to normal pancreas and non-malignant pancreatic diseases. Our findings suggest that CD90 could serve as a promising marker for pancreatic adenocarcinoma where desmoplastic stroma plays an important role in tumor growth and angiogenesis.  相似文献   

11.

Background

Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC) spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC) on pancreatic tumor cell proliferation.

Principal Findings

Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate). ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth.

Conclusion

These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available.  相似文献   

12.
Zhang Q  Meng Y  Zhang L  Chen J  Zhu D 《Cell research》2009,19(3):348-357
Protein ubiquitination by E3 ubiquitin ligases plays an important role in cancer development. In this study, we provide experimental evidence that a RING-finger-containing protein RNF13 is an ER/Golgi membrane-associated E3 ubiquitin ligase and its RING finger domain is required for the ubiquitin ligase activity. Immunohistochemical analysis of pancreatic ductal adenocarcinoma (PDAC) and paracancerous normal tissues from 72 patients documented RNF13 over-expression in 30 tumor samples (41.7%, 30/72), and its expression was significantly associated with histological grading (P = 0.024). In addition, RNF13 was detected in precancerous lesions: tubular complexes in chronic pancreatitis (CP) and pancreatic intraepithelial neoplasia (PanIN) (79.3%, 23/29 and 62.8%, 22/35, respectively). Moreover, RNF13 staining was significantly correlated with Tenascin-C expression (P = 0.004) in PDAC samples, further supporting the role of RNF13 in cancer progression. Over-expression of wild type but not RING domain-mutant RNF13 in pancreatic MiaPaca-2 cancer cells increased invasive potential and gelatinolytic activity by matrix metalloproteinase-9. Taken together, these findings reveal that RNF13 is a novel E3 ubiquitin ligase involved in pancreatic carcinogenesis; ubiquitin-mediated modification of proteins by RNF13 may participate in pancreatic cancer development.  相似文献   

13.
14.
B cell-activating factor (BAFF) is a cytokine belonging to the tumor necrosis factor (TNF) superfamily. It has been reported that BAFF is elevated in patients with autoimmune pancreatitis and contributes to the malignant potential of blood cancers and solid tumors. In this study, clinical evidence of increased BAFF levels in patients with pancreatic ductal adenocarcinoma (PDAC) was obtained, and the roles and mechanisms of BAFF in PDAC were clarified in human tissues of PDAC and from in vitro data of PDAC cell lines. Serum levels of BAFF in patients with PDAC were significantly higher than in healthy subjects (p = 0.0121). Patients with UICC stage IV PDAC (T1-4, N0-1, M1) had significantly higher levels of serum BAFF compared to patients with PDAC (p = 0.0182). BAFF was remarkably expressed in infiltrating B lymphocytes surrounding pancreatic cancer in human pancreatic tissues, suggesting that BAFF may play a role in progression of pancreatic cancer. PDAC cell lines were cultured with human recombinant BAFF, and morphology and gene expression were analyzed; pancreatic cancer cells changed to a fibroblast-like morphology, and showed altered gene expression of E-cadherin, vimentin and Snail. These BAFF-induced changes reflect enhanced cell motility and invasion. BAFF-R-overexpressing cell clones confirmed the association between these BAFF-induced changes and epithelial-mesenchymal transition (EMT)-related genes. BAFF was elevated in patients with metastatic advanced PDAC and induced alterations in PDAC cells via regulation of EMT-related genes. Elucidation of the precise role and mechanism of control of BAFF may lead to new therapeutic approaches with the aim of improving pancreatic cancer survival.  相似文献   

15.
Laser‐capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label‐free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p‐value < 0.001). 2D analysis on co‐expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 ( http://proteomecentral.proteomexchange.org/dataset/PXD002381 ).  相似文献   

16.
Galectins are galactoside-binding proteins that exhibit an important function in tumor progression by promoting cancer cell invasion and metastasis formation. Using Northern blotting and Western blotting analysis, in situ hybridization (ISH), and immunohistochemistry (IHC), we studied galectin-1 and galectin-3 in tissue samples of 33 primary pancreatic cancers and in tumor metastases in comparison to 28 normal pancreases. Furthermore, the molecular findings were correlated with the clinical and histopathological parameters of the patients. Northern blotting and Western blotting analysis showed significantly higher galectin-1 and galectin-3 mRNA and protein levels in pancreatic cancer samples than in normal controls. For galectin-1, no ISH signals and immunoreactivity were observed in acinar or ductal cells in the normal pancreas and in pancreatic cancer cells, whereas fibroblasts and extracellular matrix cells around the cancer mass exhibited strong mRNA signals and immunoreactivity. Galectin-3 mRNA signals and immunoreactivity were strongly present in most pancreatic cancer cells, whereas in the normal controls only faint ISH and IHC signals were seen in some ductal cells. Metastatic pancreatic cancer cells exhibited moderate to strong galectin-3 immunoreactivity but were negative for galectin-1. No relationship between the galectin-1 and galectin-3 mRNA levels and the tumor stage or between the IHC staining score and the tumor stage was found. However, galectin-1 mRNA levels and the IHC staining score were significantly higher in poorly differentiated tumors compared with well/moderately differentiated tumors, whereas for galectin 3 no differences were found. The expression pattern of galectin-1 and galectin-3 in pancreatic cancer tissues indicates that galectin-1 plays a role in the desmoplastic reaction that occurrs around pancreatic cancer cells, whereas galectin-3 appears to be involved in cancer cell proliferation. High levels of galectin-3 in metastatic cancer cells suggest an impact on metastasis formation.  相似文献   

17.
18.
19.
Ductal cells of the pancreas   总被引:1,自引:0,他引:1  
Ductal cells of the pancreas form the epithelial lining of the branched tubes that deliver enzymes produced by pancreatic acinar cells into the duodenum. In addition, these cells secrete bicarbonate that neutralizes stomach acidity. During development, epithelium of endodermal origin evaginates from the future duodenum area and invades the mesenchyme to form a complex branched network. All endocrine, acinar and ductal cells arise from common precursors in this epithelial structure. Adult ductal cells share some similarities with embryonic primitive ducts and may retain the ability to generate endocrine cells in the adult. Based on challenged pancreas regeneration experiments, the adult ductal cells have been proposed to be pancreatic stem cells but their role in normal endocrine cell turnover has recently been challenged. Manipulating their ability to give rise to endocrine cells may open new avenues in the treatment of diabetes and therefore they have recently been under scrutiny. In addition, in the main form of pancreatic cancer, pancreas adenocarcinoma, tumor cells share similarities with ductal cells. The secrets of an appropriate therapy for this deadly cancer may thus reside in the biology of ductal cells.  相似文献   

20.
Hwang TL  Liang Y  Chien KY  Yu JS 《Proteomics》2006,6(7):2259-2272
Pancreatic ductal adenocarcinoma (PDAC) is a common malignancy with a very low 5-year survival rate. Currently, there are no valid markers for early detection and targets for therapy. Here, we used 2-DE to analyze the protein profiles of eight PDAC specimens and paired adjacent nontumor tissues. MS was used to identify 15 protein spots that were found to be overexpressed in PDAC tissues versus adjacent controls. One of them was identified as phosphoglycerate kinase (PGK) 1, a secretable glycolytic enzyme known to participate in angiogenesis. Immunohistochemical analysis of 63 PDAC specimens revealed moderate to strong expression of PGK1 in >70% of the tumors. Further Western blotting analysis of cells from tumor and adjacent nontumor tissues obtained by laser capture microdissection confirmed the enhanced expression of PGK1 in tumor cells. Furthermore, the serum levels of PGK1 were significantly higher in PDAC patients (n = 21) than in the control group (n = 25) (p < 0.005), as determined by ELISA. These observations indicate that protein profile analysis using a combination of 2-DE and MS provides an effective strategy for identifying biomarkers that may have diagnostic potential for PDAC, and identify PGK1 as a potential biomarker and/or therapeutic target for PDAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号