首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes.  相似文献   

2.
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative--early phase, pulsatility--decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic beta-cells and to the death of 50 % of beta-cell by apoptosis (lipotoxicity).  相似文献   

3.
4.
5.
Fatty acids have historically important structural roles in contributing to epidermal barrier function and therefore cutaneous health. Their metabolism to bioactive compounds is often up-regulated in response to cutaneous toxins thus providing them with functional roles. Some metabolites of arachidonic acid, such as 15S-hydroxyeicosatetraenoic acid (HETE), also serve functional roles as direct ligands for peroxisome proliferator activated receptors (PPARs). 15S-HETE, produced by 15-lipoxygenase type 2 (15-LOX-2), is an endogenous ligand for PPARgamma. This report demonstrates epidermal keratinocyte expression of both 15-LOX-2 and PPARgamma and provides evidence for a relationship beyond that of ligand-producer and -user, namely in vivo association of the two proteins at the molecular level making the enzyme a candidate nuclear receptor coregulator. Such close physical approximation of the 15S-HETE-producing enzyme and PPARgamma could potentiate the receptor response to a short-lived ligand. 15-LOX-2 may exemplify a class of enzymatically active nuclear receptor coactivator proteins distinct from those previously described but sharing their ability to promote expression from nuclear receptor-regulated promoters.  相似文献   

6.
We tested the effects of acute perturbations of elevated fatty acids (FA) on insulin secretion in type 2 diabetes. Twenty-one type 2 diabetes subjects with hypertriglyceridemia (triacylglycerol >2.2 mmol/l) and 10 age-matched nondiabetic subjects participated. Glucose-stimulated insulin secretion was monitored during hyperglycemic clamps for 120 min. An infusion of Intralipid and heparin was added during minutes 60-120. In one of two tests, the subjects ingested 250 mg of Acipimox 60 min before the hyperglycemic clamp. A third test (also with Acipimox) was performed in 17 of the diabetic subjects after 3 days of a low-fat diet. Acipimox lowered FA levels and enhanced insulin sensitivity in nondiabetic and diabetic subjects alike. Acipimox administration failed to affect insulin secretion rates in nondiabetic subjects and in the group of diabetic subjects as a whole. However, in the diabetic subjects, Acipimox increased integrated insulin secretion rates during minutes 60-120 in the 50% having the lowest levels of hemoglobin A(1c) (379 +/- 34 vs. 326 +/- 30 pmol x kg(-1) x min(-1) without Acipimox, P < 0.05). A 3-day dietary intervention diminished energy from fat from 39 to 23% without affecting FA levels and without improving the insulin response during clamps. Elevated FA levels may tonically inhibit stimulated insulin secretion in a subset of type 2 diabetic subjects.  相似文献   

7.
Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet.  相似文献   

8.
Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet β-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in β-cells. These mice exhibited abnormal islet morphology with reduced β-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.  相似文献   

9.
目的 :探讨游离脂肪酸是否对大鼠胰岛细胞某些胰岛素信号转导蛋白的表达产生一定的影响。方法 :分离、培养新生SD大鼠胰岛细胞 ,分别与软脂酸 (0 .2 5mmol/L)或油酸 (0 .12 5mmol/L)孵育 12、2 4、36h ,提取蛋白后用Western印迹法检测胰岛素信号转导蛋白 (cPKCα、Grb2、ERK2 )的水平。结果 :软脂酸和油酸孵育 12h后 ,大鼠胰岛细胞cPKCα、Grb2和ERK2的蛋白水平同对照组相比均未发生显著变化 (P >0 .0 5 ) ;孵育 2 4h后胰岛细胞Grb2的蛋白水平同对照组相比未发生显著变化 (P >0 .0 5 ) ;cPKCα的蛋白水平同孵育 12h后相比显著上调 (P <0 .0 5 ) ;ERK2的蛋白水平同对照组相比明显下降 (P <0 .0 5 )。软脂酸和油酸孵育 36h后大鼠胰岛细胞cPKCα的蛋白水平同对照组及孵育 12h后相比显著上调 (P <0 .0 5 ) ;而Grb2和ERK2的蛋白水平同对照组及孵育 12h后相比均明显下降 (P <0 .0 5 )。结论 :游离脂肪酸可通过上调cPKCα和降低Grb2和ERK2的蛋白水平来阻滞胰岛素的信号转导 ,这可能是游离脂肪酸引起胰岛素抵抗的机制之一  相似文献   

10.
11.
Fibroblasts from patients with long-chain acyl-CoA dehydrogenase deficiency were found to oxidize [1-14C]linoleate at an average rate of 60% of normal but [9,10(n)-3H]myristate at an average rate of only 37% of normal, a relationship reverse from that predicted by the chain-length specificities of the three known straight-chain mitochondrial acyl-CoA dehydrogenases. The residual long-chain beta-oxidative activity was found to be mitochondrial and associated with the accumulation of tetradecadienoate (C14:2w6) when the mutant fibroblasts were incubated with 100 mumol/L linoleate (C18:2w6) or eicosadienoate (C20:2w6). The results suggest the presence in human fibroblasts of a novel acyl-CoA dehydrogenase with activity toward 15 to 20 carbon-length fatty acids.  相似文献   

12.
Human subjects consuming fish oil showed a significant suppression of cyclooxygenase-2 (COX-2) expression in blood monocytes when stimulated in vitro with lipopolysaccharide (LPS), an agonist for Toll-like receptor 4 (TLR4). Results with a murine monocytic cell line (RAW 264.7) stably transfected with COX-2 promoter reporter gene also demonstrated that LPS-induced COX-2 expression was preferentially inhibited by docosahexaenoic acid (DHA, C22:6n-3) and eicosapentaenoic acid (EPA, C20:5n-3), the major n-3 polyunsaturated fatty acids (PUFAs) present in fish oil. Additionally, DHA and EPA significantly suppressed COX-2 expression induced by a synthetic lipopeptide, a TLR2 agonist. These results correlated with the preferential suppression of LPS- or lipopeptide-induced NF kappa B activation by DHA and EPA. The target of inhibition by DHA is TLR itself or its associated molecules, but not downstream signaling components. In contrast, COX-2 expression by TLR2 or TRL4 agonist was potentiated by lauric acid, a saturated fatty acid. These results demonstrate that inhibition of COX-2 expression by n-3 PUFAs is mediated through the modulation of TLR-mediated signaling pathways. Thus, the beneficial or detrimental effects of different types of dietary fatty acids on the risk of the development of many chronic inflammatory diseases may be in part mediated through the modulation of TLRs.  相似文献   

13.
Recent studies indicate that insulin resistance and type 2 diabetes result from the accumulation of lipids in tissues not suited for fat storage, such as skeletal muscle and the liver. To elucidate the mechanisms linking exogenous fats to the inhibition of insulin action, we evaluated the effects of free fatty acids (FFAs) on insulin signal transduction in cultured C2C12 myotubes. As we described previously (Chavez, J. A., and Summers, S. A. (2003) Arch. Biochem. Biophys. 419, 101-109), long-chain saturated FFAs inhibited insulin stimulation of Akt/protein kinase B, a central regulator of glucose uptake and anabolic metabolism. Moreover, these FFAs stimulated the de novo synthesis of ceramide and sphingosine, two sphingolipids shown previously to inhibit insulin action. To determine the contribution of either sphingolipid in FFA-dependent inhibition of insulin action, we generated C2C12 myotubes that constitutively overexpress acid ceramidase (AC), an enzyme that catalyzes the lysosomal conversion of ceramide to sphingosine. AC overexpression negated the inhibitory effects of saturated FFAs on insulin signaling while blocking their stimulation of ceramide accumulation. By contrast, AC overexpression stimulated the accrual of sphingosine. These results support a role for aberrant accumulation of ceramide, but not sphingosine, in the inhibition of muscle insulin sensitivity by exogenous FFAs.  相似文献   

14.
Secretion of hepatic apoB lipoproteins removes excess triglyceride from the liver. However, the mechanism by which synthesis of apoB, which occurs on the rough endoplasmic reticulum, is coordinated with synthesis of triglyceride, which takes place in the smooth endoplasmic reticulum, is not known. To examine this question, we have manipulated intracellular synthesis of triglyceride and cholesteryl ester in HepG2 cells and determined the impact of these maneuvers on apoB secretion. Since cholesteryl ester is the only major lipid class synthesized in the rough endoplasmic reticulum, our hypothesis was that, in response to a fatty acid challenge, synthesis of cholesteryl ester rather than synthesis of triglyceride would be the immediate trigger to apoB secretion. Oleate complexed to bovine serum albumin caused intracellular triglyceride synthesis to increase 6-fold and cholesteryl ester synthesis to increase almost 3-fold, while apoB secretion into the medium increased by 2.5-fold (P less than 0.0125) at all time points between 4 and 24 h. Addition of acylation stimulating protein to the medium further stimulated both triglyceride and cholesteryl ester synthesis (58% and 108%, respectively) above oleate alone and this resulted in a 50% increase in apoB secretion (P less than 0.0025). By contrast, both progesterone and 2-bromooctanoate inhibited triglyceride and cholesteryl ester synthesis and these effects were associated with reduced apoB secretion. Lovastatin inhibited cholesteryl ester synthesis (45%, P less than 0.0025); however, at the doses used, triglyceride formation was unaffected. Under these circumstances, apoB secretion was reduced by 25% (P less than 0.05). Similarly, 58-035 (an inhibitor of acyl CoA:cholesterol acyltransferase) on the one hand reduced cholesteryl ester synthesis markedly (59%, P less than 0.005), but on the other increased triglyceride synthesis though not statistically significantly (65%, P NS), and again this resulted in decreased apoB secretion (25%, P less than 0.005). Control experiments established that changes in low density lipoprotein catabolism did not contribute importantly to the quantity of apoB in the medium. Taken together, the data indicate that, at least in HepG2 cells, there are parallel changes in cholesteryl ester synthesis and apoB secretion and suggest that it is cholesteryl ester synthesis, not triglyceride synthesis, that is the immediate regulator of apoB secretion when these cells are exposed to an increased influx of fatty acids. However, alternative or additional regulatory mechanisms, such as, for example, a role for acylation of apoB, are not excluded by these studies.  相似文献   

15.
Calcium-dependent phospholipases A2 are markedly inhibited in vitro by cis-unsaturated fatty acids (CUFAs) and to a much lesser extent by trans-unsaturated or saturated fatty acids. Thus, CUFAs may function as endogenous suppressors of lipolysis. To better understand the mechanism of inhibition, kinetic analysis, fluorescence spectroscopy and gel permeation chromatography were employed to demonstrate that CUFAs interact with a highly purified Ca(2+)-dependent phospholipase A2 from Naja mossambica mossambica venom. Arachidonate inhibited hydrolysis of both [1-14C]oleate-labelled, autoclaved Escherichia coli and [1-14C]linoleate-labelled phosphatidylethanolamine in an apparent competitive manner. When subjected to gel permeation chromatography, [3H]arachidonate, but not [3H]palmitate, comigrated with the enzyme. Arachidonic and other CUFAs increased the fluorescence intensity of the enzyme almost 2-fold in a dose-dependent fashion (50 microM = 180% of control); methyl arachidonate was without effect. Saturated fatty acids had only a modest effect on enzyme fluorescence (50 microM = 122% of control). Concentrations of arachidonate that inhibited in vitro enzymatic activity by almost 80% did not alter binding of phospholipase A2 to the E. coli substrate. Collectively, these data demonstrate that, while CUFAs selectively bind to the enzyme, they do not influence phospholipase A2-substrate interaction. Inhibition of in vitro phospholipase A2 activity by CUFAs may be mediated by the formation of an enzymatically inactive enzyme-substrate-inhibitor complex.  相似文献   

16.
Electrophysiological studies of cultured rat pancreatic β-cells using intracellular microelectrodes show that exogenous insulin over the range of 0.1–10.0 μg/ml inhibits the electrical activity due to 27.8 mM glucose in a dose-related manner. This inhibitory effect is manifested by a mean increase of the membrane potential from about ?20 to ?30 mV and inhibition of the manner of cells impaled showing spike activity from 60 to less than 10%. The inhibitory influence of insulin is rapid occuring within 5 min for the highest level used. The results provide evidence for a negative feedback role of insulin in regulating its own release.  相似文献   

17.
Electrophysiological studies of cultured rat pancreatic beta-cells using intracellular microelectrodes show that exogenous insulin over the range of 0.1 -- 10.0 microng/ml inhibits the electrical activity due to 27.8 mM glucose in a dose-related manner. This inhibitory effect is manifested by a mean increase of the membrane potential from about --20 to --30 mV and inhibition of the number of cells impaled showing spike activity from 60 to less than 10%. The inhibitory influence of insulin is rapid occurring within 5 min for the highest level used. The results provide evidence for a negative feedback role of insulin in regulating its own release.  相似文献   

18.
To study the putative role of human carnitine octanoyltransferase (COT) in the beta-oxidation of branched-chain fatty acids, we identified and cloned the cDNA encoding human COT and expressed it in the yeast Saccharomyces cerevisiae. Enzyme activity measurements showed that COT efficiently converts one of the end products of the peroxisomal beta-oxidation of pristanic acid, 4, 8-dimethylnonanoyl-CoA, to its corresponding carnitine ester. Production of the carnitine ester of this branched/medium-chain acyl-CoA within the peroxisome is required for its transport to the mitochondrion where further beta-oxidation occurs. In contrast, 4, 8-dimethylnonanoyl-CoA is not a substrate for carnitine acetyltransferase, another acyltransferase localized in peroxisomes, which catalyzes the formation of carnitine esters of the other products of pristanic acid beta-oxidation, namely acetyl-CoA and propionyl-CoA. Our results shed new light on the function of COT in fatty acid metabolism and point to a crucial role of COT in the beta-oxidation of branched-chain fatty acids.  相似文献   

19.
Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9456-5) contains supplementary material, which is available to authorized users.  相似文献   

20.
The aim of this study was to determine whether cinnamon extract (CE) would improve the glucose utilization in normal male Wistar rats fed a high-fructose diet (HFD) for three weeks with or without CE added to the drinking water (300 mg/kg/day). In vivo glucose utilization was measured by the euglycemic clamp technique. Further analyses on the possible changes in insulin signaling occurring in skeletal muscle were performed afterwards by Western blotting. At 3 mU/kg/min insulin infusions, the decreased glucose infusion rate (GIR) in HFD-fed rats (60 % of controls, p < 0.01) was improved by CE administration to the same level of controls (normal chow diet) and the improving effect of CE on the GIR of HFD-fed rats was blocked by approximately 50 % by N-monometyl-L-arginine. The same tendency was found during the 30 mU/kg/min insulin infusions. There were no differences in skeletal muscle insulin receptor (IR)-beta, IR substrate (IRS)-1, or phosphatidylinositol (PI) 3-kinase protein content in any groups. However, the muscular insulin-stimulated IR-beta and IRS-1 tyrosine phosphorylation levels and IRS-1 associated with PI 3-kinase in HFD-fed rats were only 70 +/- 9 %, 76 +/- 5 %, and 72 +/- 6 % of controls (p < 0.05), respectively, and these decreases were significantly improved by CE treatment. These results suggest that early CE administration to HFD-fed rats would prevent the development of insulin resistance at least in part by enhancing insulin signaling and possibly via the NO pathway in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号