首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When the p-value is set at <0.05 in statistical group comparisons, a 5% rate of "false significant" results is expected. In order to test the reliability of our 2-DE method, we loaded each of 24 gels with equal-sized samples (200 mug protein from pooled rat brain, pH 4-7, stained with ruthenium fluorescent stain for visualization) and statistically compared the first 12 gels with the last 12. In numerous experiments the rate of significant differences found far exceeded 5%. Several factors were identified as causing the following rates of false significant differences in spot intensities: (i) running samples in two different 2-DE runs (42%), (ii) running second dimension gels produced in two different gel casters (16%), (iii) normalizing the entire gel instead of separately normalizing several different gel zones (11%), (iv) using IPG strips from different packages (19%), (v) dividing the whole sample into subgroups during software analysis (9%). After controlling for all these factors, the rates of "false positive" results in our experiments were regularly reduced to approximately 5%. This is an indispensable prerequisite for avoiding too high a rate of false positive results in experiments in which different subgroups are compared statistically.  相似文献   

2.
Tsakanikas P  Manolakos ES 《Proteomics》2011,11(10):2038-2050
Two-dimensional gel electrophoresis (2-DE) is the most established protein separation method used in expression proteomics. Despite the existence of sophisticated software tools, 2-DE gel image analysis still remains a serious bottleneck. The low accuracies of commercial software packages and the extensive manual calibration that they often require for acceptable results show that we are far from achieving the goal of a fully automated and reliable, high-throughput gel processing system. We present a novel spot detection and quantification methodology which draws heavily from unsupervised machine-learning methods. Using the proposed hierarchical machine learning-based segmentation methodology reduces both the number of faint spots missed (improves sensitivity) and the number of extraneous spots introduced (improves precision). The detection and quantification performance has been thoroughly evaluated and is shown to compare favorably (higher F-measure) to a commercially available software package (PDQuest). The whole image analysis pipeline that we have developed is fully automated and can be used for high-throughput proteomics analysis since it does not require any manual intervention for recalibration every time a new 2-DE gel image is to be analyzed. Furthermore, it can be easily parallelized for high performance and also applied without any modification to prealigned group average gels.  相似文献   

3.
One of the key limitations for proteomic studies using two-dimensional (2D) gel is the lack of automatic, fast, robust, and reliable methods for detecting, matching, and quantifying protein spots. Although there are commercial software packages for 2D gel image analysis, extensive human intervention is still needed for spot detection and matching, which is time-consuming and error-prone. Moreover, the commercial software packages are usually expensive and non-open source. Thus, it is very beneficial for researchers to have free software that is fast, fully automatic, and robust. In this paper, we review and compare two recently developed and publicly available software packages, RegStatGel and Pinnacle, for analyzing 2D gel images. These two software packages share some common features and also have some fundamental difference in the aspects of spot detection and quantification. Based on our experience, RegStatGel is much better in terms of spot detection and matching. It also contains more advanced statistical tools and is more user-friendly. In contrast, Pinnacle is quite sensitive to background noise and relies on external statistical software packages for statistical analysis.  相似文献   

4.
Cutler P  Heald G  White IR  Ruan J 《Proteomics》2003,3(4):392-401
Separation of complex mixtures of proteins by two-dimensional gel electrophoresis (2-DE) is a fundamental component of current proteomic technology. Quantitative analysis of the images generated by digitization of such gels is critical for the identification of alterations in protein expression within a given biological system. Despite the availability of several commercially available software packages designed for this purpose, image analysis is extremely resource intensive, subjective and remains a major bottleneck. In addition to reducing throughput, the requirement for manual intervention results in the introduction of operator subjectivity, which can limit the statistical significance of the numerical data generated. A key requirement of image analysis is the accurate definition of protein spot boundaries using a suitable method of image segmentation. We describe a method of spot detection applicable to 2-DE image files using a segmentation method involving pixel value collection via serial analysis of the image through its range of density levels. This algorithm is reproducible, sensitive, accurate and primarily designed to be automatic, removing operator subjectivity. Furthermore, it is believed that this method may offer the potential for improved spot detection over currently available software.  相似文献   

5.
Clark BN  Gutstein HB 《Proteomics》2008,8(6):1197-1203
Many software packages have been developed to process and analyze 2-D gel images. Some programs have been touted as automated, high-throughput solutions. We tested five commercially available programs using 18 replicate gels of a rat brain protein extract. We determined computer processing time, approximate spot editing time, time required to correct spot mismatches, as well as total processing time. We also determined the number of spots automatically detected, number of spots kept after manual editing, and the percentage of automatically generated correct matches. We also determined the effect of increasing the number of replicate gels on spot matching efficiency for two of the programs. We found that for all programs tested, less than 3% of the total processing time was automated. The remainder of the time was spent in manual, subjective editing of detected spots and computer generated matches. Total processing time for 18 gels varied from 22 to 84 h. The percentage of correct matches generated automatically varied from 1 to 62%. Increasing the number of gels in an experiment dramatically reduced the percentage of automatically generated correct matches. Our results demonstrate that these 2-D gel analysis programs are not automatic or rapid, and also suggest that matching accuracy decreases as experiment size increases.  相似文献   

6.
The performance of two-dimensional electrophoresis in conventional gels in Cartesian coordinates (2-DE) vs. polar coordinates (2-PE) is here evaluated. Although 2-DE is performed in much longer Immobiline gels in the first dimension (17 cm) vs. barely 7-cm in 2-PE, an equivalent resolving power is found. Moreover, due to the possibility of running up to seven Immobiline strips in the radial gel format, the reproducibility of spot position is seen to be higher, this resulting in a 20% higher matching efficiency. As an extra bonus, strings of "isobaric" spots (i.e. polypeptides of identical mass with different pI values) are more resolved in the radial gel format, especially in the 10 to 30 kDa region, where the gel area fans out leaving extra space for spot resolution. In conclusion, this novel gel format in the second dimension of 2D gels is seen as an important improvement of this technique, still one of the most popular in proteome analysis.  相似文献   

7.
蛋白质双向电泳图像分析   总被引:12,自引:0,他引:12  
随着人类基因组计划的接近完成,蛋白质组(proteome)研究成为新的热点.其中高分辨率的双向电泳(two-dimensional gel electrophoresis, 2-DE)技术使对组织或细胞的整个蛋白质组的综合分析成为可能.近年来这一技术有了很大的改进和提高,特别是图像分析系统,算法更为先进,功能日益强大,操作也更简便,为大规模研究提供了良好的工具.使用新一代的2D图像分析系统,对离体培养的雪旺氏细胞的蛋白质样品双向电泳结果进行了初步分析,探讨了在图像扫描、点检测、背景消除、匹配、结果报告和数据分析各步中的技术问题,并报告了进行2D图像分析的体会.  相似文献   

8.
MOTIVATION: One of the key limitations for proteomic studies using 2-dimensional gel electrophoresis (2DE) is the lack of rapid, robust and reproducible methods for detecting, matching and quantifying protein spots. The most commonly used approaches involve first detecting spots and drawing spot boundaries on individual gels, then matching spots across gels and finally quantifying each spot by calculating normalized spot volumes. This approach is time consuming, error-prone and frequently requires extensive manual editing, which can unintentionally introduce bias into the results. RESULTS: We introduce a new method for spot detection and quantification called Pinnacle that is automatic, quick, sensitive and specific and yields spot quantifications that are reliable and precise. This method incorporates a spot definition that is based on simple, straightforward criteria rather than complex arbitrary definitions, and results in no missing data. Using dilution series for validation, we demonstrate Pinnacle outperformed two well-established 2DE analysis packages, proving to be more accurate and yielding smaller coefficiant of variations (CVs). More accurate quantifications may lead to increased power for detecting differentially expressed spots, an idea supported by the results of our group comparison experiment. Our fast, automatic analysis method makes it feasible to conduct very large 2DE-based proteomic studies that are adequately powered to find important protein expression differences. AVAILABILITY: Matlab code to implement Pinnacle is available from the authors upon request for non-commercial use.  相似文献   

9.
The Human Proteome Organisation (HUPO) Brain Proteome Project (BPP) pilot studies have generated over 200 2-D gels from eight participating laboratories. This data includes 67 single-channel and 60 DIGE gels comparing 30 whole frozen C57/BL6 female mouse brains, ten each at embryonic day 16, postnatal day 7 (juvenile) and postnatal day 54-56 (adult); and ten single-channel and three DIGE gels comparing human epilepsy surgery of the temporal front lobe with a corresponding post-mortem specimen. The samples were generated centrally and distributed to the participating laboratories, but otherwise no restrictions were placed on sample preparation, running and staining protocols, nor on the 2-D gel analysis packages used. Spots were characterised by MS and the annotated gel images published on a ProteinScape web server. In order to examine the resultant differential expression and protein identifications, we have reprocessed a large subset of the gels using the newly developed RAIN (Robust Automated Image Normalisation) 2-D gel matching algorithm. Traditional approaches use symbolic representation of spots at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in spot modelling and matching. With RAIN, image intensity distributions, rather than selected features, are used, where smooth geometric deformation and expression bias are modelled using multi-resolution image registration and bias-field correction. The method includes a new approach of volume-invariant warping which ensures the volume of protein expression under transformation is preserved. An image-based statistical expression analysis phase is then proposed, where small insignificant expression changes over one gel pair can be revealed when reinforced by the same consistent changes in others. Results of the proposed method as applied to the HUPO BPP data show significant intra-laboratory improvements in matching accuracy over a previous state-of-the-art technique, Multi-resolution Image Registration (MIR), and the commercial Progenesis PG240 package.  相似文献   

10.
Assumptions that need to be considered prior to statistical analysis of protein spot volumes from two-dimensional gel electrophoresis (2-DE) data are studied using replicate gels of the same sample. The most important observation is that the data tables of protein spot volumes from 2-DE images contain a large number of missing values, which are not consistent with the presence or absence of the proteins. This implies both loss of information and problems for the subsequent statistical analysis. Challenges with 2-DE protein spot volumes are viewed in light of multiple gel comparisons and multivariate data analysis.  相似文献   

11.
Two-dimensional electrophoresis (2-DE) provides a rapid means for separating thousands of proteins from cell and tissue samples in one run. Although this powerful research tool has been enthusiastically applied in many fields of biomedical research, accurate analysis and interpretation of the data have provided many challenges. Several analysis steps are needed to convert the large amount of noisy data obtained with 2-DE into reliable and interpretable biological information. The goals of such analysis steps include accurate protein detection and quantification, as well as the identification of differentially expressed proteins between samples run on different gels. To achieve these goals, systematic errors such as geometric distortions between the gels must be corrected by using computer-assisted methods. A wide range of computer software has been developed, but no general consensus exists as standard for 2-DE data analysis protocol. The choice of analysis approach is an important element depending both on the data and on the goals of the experiment. Therefore, basic understanding of the algorithms behind the software is required for optimal results. This review highlights some of the common themes in 2-DE data analysis, including protein spot detection and geometric image warping using both spot- and pixel-based approaches. Several computational strategies are overviewed and their relative merits and potential pitfalls discussed. Finally, we offer our own personal view of future trends and developments in large-scale proteome research.  相似文献   

12.
The role of bioinformatics in two-dimensional gel electrophoresis   总被引:1,自引:0,他引:1  
Dowsey AW  Dunn MJ  Yang GZ 《Proteomics》2003,3(8):1567-1596
Over the last two decades, two-dimensional electrophoresis (2-DE) gel has established itself as the de facto approach to separating proteins from cell and tissue samples. Due to the sheer volume of data and its experimental geometric and expression uncertainties, quantitative analysis of these data with image processing and modelling has become an actively pursued research topic. The results of these analyses include accurate protein quantification, isoelectric point and relative molecular mass estimation, and the detection of differential expression between samples run on different gels. Systematic errors such as current leakage and regional expression inhomogeneities are corrected for, followed by each protein spot in the gel being segmented and modelled for quantification. To assess differential expression of protein spots in different samples run on a series of two-dimensional gels, a number of image registration techniques for correcting geometric distortion have been proposed. This paper provides a comprehensive review of the computation techniques used in the analysis of 2-DE gels, together with a discussion of current and future trends in large scale analysis. We examine the pitfalls of existing techniques and highlight some of the key areas that need to be developed in the coming years, especially those related to statistical approaches based on multiple gel runs and image mining techniques through the use of parallel processing based on cluster computing and the grid technology.  相似文献   

13.
We have developed and refined a system for quantitative computer analysis of two-dimensional polyacrylamide gel electrophoretograms. The system, named Elsie 4, is based on one described by Vo et al. (Anal. Biochem. 112, 258 (1981]. It is highly automated. Elsie 4 can find, and measure the intensity of, almost any spot resolvable on two-dimensional gels, including spots visible only as shoulders off larger spots and spots so close together that there is no "valley" between them. It can automatically match the spot patterns of different gels, potentially without the need for a user to provide landmark matches. The matches between paired gels let us follow the synthesis of any spot through a set of gels. Information about a group of matched spots can be obtained by referring to any spot in the group. There is generally no need for a standard or reference gel. Data for two experiments can be combined and compared by matching any gel in one experiment with any gel in the other. There are ways to automatically find possible mismatches in sets of gels. Scans and the results of the analysis can be shown on an image displayer. The programs use function libraries; this helps ensure consistency and increase portability. The programs and functions can be linked together in many ways; this lets users build custom programs for analysis of specific experiments.  相似文献   

14.
Luhn S  Berth M  Hecker M  Bernhardt J 《Proteomics》2003,3(7):1117-1127
Databases for two-dimensional protein gels pose new challenges in extracting meaningful information from large numbers of experiments. In order to create expression profiles, positions of corresponding protein spots across all gel images have to be established. In larger gel sets errors may accumulate rapidly during this spot matching process, effectively limiting the number of samples available for data mining. Here we present a novel approach for organizing spot data based on the concept of a standard position for a protein species. Standard positions are meaningful average positions that are determined using all occurrences of a protein species. They can be extended to spots that are not annotated via interpolation. The standard position of a spot can serve as a unifying index across all gels in a database, thus allowing creation and analysis of expression profiles that span the whole collection. The standard position gives a much more accurate estimation of a spot's position on a gel than can be obtained using theoretical isoelectric point and molecular weight. Positional indexing is a complement to a priori identifications (e.g. by mass spectrometry or Edman degradation). Moreover it can be used in advance to select spots that are worth identifying because they show relevant expression profiles. Furthermore, we show how to combine all spots that occur on any of the gels into one synthetic but nevertheless realistic-looking image. This composite image is produced such that all spots have their standard positions. It can serve as a proteome reference map for an organism. As an application, we have computed a reference map from 23 gel images of Bacillus subtilis, using an enhanced prerelease version of the gel analysis software Delta2D (DECODON, Greifswald, Germany).  相似文献   

15.
We compared the use of wet and dry two-dimensional electrophoresis (2-DE) gels for in-gel tryptic digestion and subsequent analysis by mass spectrometry, first using bovine serum albumin (BSA) as a model protein and then using unknown proteins from an extract of the silkworm midgut. The gel was either dried at 80 degrees C or left wet. Upon analysis of BSA, there was little difference in peptide recovery from 2-DE or in mass spectrum between the dry and the wet gels. The midgut extract was resolved into more than 1,100 protein spots by 2-DE, and 40 of these spots were sampled for further analysis. For all of the 40 proteins, the results obtained from dry and wet gels were quite similar in mass spectra and protein identification, although the relative amounts of peptides from tryptic digestion ranged from 45 to 146%. Based on these results, we confirmed the utility of dry electrophoretic gels for proteomics of insect extracts.  相似文献   

16.
The present review attempts to cover a number of methods that have appeared in the last few years for performing quantitative proteome analysis. However, due to the large number of methods described for both electrophoretic and chromatographic approaches, we have limited this review to conventional two-dimensional (2-D) map analysis which couples orthogonally a charge-based step (isoelectric focusing) to a size-based separation step (sodium dodecyl sulfate-electrophoresis). The first and oldest method applied to 2-D map data reduction is based on statistical analysis performed on sets of gels via powerful software packages, such as Melanie, PDQuest, Z3 and Z4000, Phoretix and Progenesis. This method calls for separately running a number of replicas for control and treated samples. The two sets of data are then merged and compared via a number of software packages which we describe. In addition to commercially-available systems, a number of home made approaches for 2-D map comparison have been recently described and are also reviewed. They are based on fuzzyfication of the digitized 2-D gel image coupled to linear discriminant analysis, three-way principal component analysis or a combination of principal component analysis and soft-independent modeling of class analogy. These statistical tools appear to perform well in differential proteomic studies.  相似文献   

17.

Background  

In current comparative proteomics studies, the large number of images generated by 2D gels is currently compared using spot matching algorithms. Unfortunately, differences in gel migration and sample variability make efficient spot alignment very difficult to obtain, and, as consequence most of the software alignments return noisy gel matching which needs to be manually adjusted by the user.  相似文献   

18.
Rogers M  Graham J  Tonge RP 《Proteomics》2003,3(6):879-886
Protein spot detection is central to the analysis of two-dimensional electrophoresis gel images. There are many commercially available packages, each implementing a protein spot detection algorithm. Despite this, there have been relatively few studies comparing the performance characteristics of the different packages. This is in part due to the fact that different packages employ different sets of user-adjustable parameters. It is also partly due to the fact that the images are complex. To carry out an evaluation, "ground truth" data specifying spot position, shape and intensities needs to be defined subjectively on selected test images. We address this problem by proposing a method of evaluation using synthetic images with unambiguous interpretation. The characteristics of the spots in the synthetic images are determined from statistical models of the shape, intensity, size, spread and location of real spot data. The distribution of parameters is described using a Gaussian mixture model obtained from training images. The synthetic images allow us to investigate the effects of individual image properties, such as signal-to-noise ratios and degree of spot overlap, by measuring quantifiable outcomes, e.g. accuracy of spot position, false positive and false negative detection. We illustrate the approach by carrying out quantitative evaluations of spot detection on a number of widely used analysis packages.  相似文献   

19.
Ebstrup T  Saalbach G  Egsgaard H 《Proteomics》2005,5(11):2839-2848
A proteomics study using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed on Phytophthora infestans. Proteins from cysts, germinated cysts and appressoria grown in vitro were isolated and separated by 2-DE. Statistical quantitative analysis of the protein spots from five independent experiments of each developmental stage revealed significant up-regulation of ten spots on gels from germinated cysts compared to cysts. Five spots were significantly up-regulated on gels from appressoria compared to germinated cysts and one of these up-regulated spots was not detectable on gels from cysts. In addition, one spot was significantly down-regulated and another spot not detectable on the gels from appressoria. The corresponding proteins to 13 of these spots were identified with high confidence using tandem mass spectrometry and database searches. The functions of the proteins that were up-regulated in germinated cysts and appressoria can be grouped into the following categories: protein synthesis (e.g. a DEAD box RNA helicase), amino acid metabolism, energy metabolism and reactive oxygen species scavenging. The spot not detected in appressoria was identified as the P. infestans crinkling- and necrosis-inducing protein CRN2. The identified proteins are most likely involved in the establishment of the infection of the host plant.  相似文献   

20.
Although two-dimensional gel electrophoresis (2-DE) has long been a favorite experimental method to screen proteomes, its reproducibility is seldom analyzed with the assistance of quantitative error models. The lack of models of residual distributions that can be used to assign likelihood to differential expression reflects the difficulty in tackling the combined effect of variability in spot intensity and uncertain recognition of the same spot in different gels. In this report we have analyzed a series of four triplicate two-dimensional gels of chicken embryo heart samples at two distinct development stages to produce such a model of residual distribution. In order to achieve this reference error model, a nonparametric procedure for consistent spot intensity normalization had to be established, and is also reported here. In addition to variability in normalized intensity due to various sources, the residual variation between replicates was observed to be compounded by failure to identify the spot itself (gel alignment). The mixed effect is reflected by variably skewed bimodal density distributions of residuals. The extraction of a global error model that accommodated such distribution was achieved empirically by machine learning, specifically by bootstrapped artificial neural networks. The model described is being used to assign confidence values to observed variations in arbitrary 2-DE gels in order to quantify the degree of over-expression and under-expression of protein spots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号