首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially purified protein extracts of Catharanthus roseus leaves were able to couple catharanthine and vindoline to produce α-3′,4′-anhydrovinblastine (AVLB) in a reaction strictly dependent on H2O2. This result, and the co-purification of peroxidase with AVLB synthetase activity, strongly suggest a peroxidase-like nature for the coupling enzyme. Only one peroxidase isoenzyme was detected in C. roseus leaves, and it was shown that this isoenzyme consists of a molecularly-heterogeneous basic peroxidase (EC 1-11-1-7) mainly located in the vacuole. These results suggest that a basic peroxidase located in the vacuole may be the main enzyme responsible for AVLB synthesis in C. roseus leaves. This isoenzyme was also found in cell walls where a peroxidase inhibitor was detected.  相似文献   

2.
R.-A. Walk  B. Hock 《Planta》1976,129(1):27-32
Summary Specific antibodies were prepared against the purified mitochondrial malate dehydrogenase (EC 1.1.1.37) from cotyledons of watermelon seedlings (Citrullus vulgaris Schrad.). The isoenzyme was assayed by means of quantitative radial immunodiffusion. Cotyledons of ungerminated seeds were found to contain mitochondrial MDH. During the first 4 days of germination the enzyme activity increased threefold finally contributing 16% to the total MDH activity extracted from cotyledon tissue. Isopycnic CsCl density centrifugation was used to investigate the mode of activity increase. After a four-day period of labelling with deuterium oxide and purification of the mitochondrial isoenzyme, a density shift of 0.021kgx1-1, accompanied by considerable band broadening of the enzyme profile was observed. These findings are evidence for the de novo synthesis of mitochondrial MDH and its relatively slow turnover in germinating seeds.Abbreviations mMDH mitochondrial malate dehydrogenase - D2O deuterium oxide  相似文献   

3.
Summary Rabbit muscle phosphorylaseb was found to be capable of forming protein bound±-1,4 glucosyl chains upon incubation of the enzyme with appropriate concentrations of glucose-1-phosphate with no primer addition (unprimed synthesis). This activity would only be present in a small fraction of the total muscle phosphorylaseb activity, as judged from the high concentrations of enzyme which are required to demonstrate the occurrence of unprimed synthesis. Polyacrylamide gel electrophoresis shows the presence of a phosphorylase isoenzyme capable of accepting glucosyl moieties, giving rise to a glucosylated protein enzymatically active in the chain lengthening of its own glucan.Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

4.
The X-chromosomal geneglucose-6-phosphate dehydrogenase(G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designatedG6pd-2,encoding a G6PD isoenzyme.G6pd-2does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encodedG6pdgene is not transcribed. Expression of theG6pd-2sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence ofG6pd-2-encoded isoenzyme in these cell types.G6pd-2is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis.  相似文献   

5.
Cariogenic streptococci produce tenacious water-insoluble polysaccharides from sucrose and these form the structural intercellular matrix of dental plaque. Two Streptomyces species were isolated from soils on agar medium containing the water-insoluble polyglucan as a sole carbon source. They were identified as Streptomyces werraensis (strain F1) and Streptomyces chartreusis (strain F2). These strains produced extracellular enzymes which strongly solubilized the polyglucans from various strains of cariogenic streptococci. Strain F2 produced polyglucanases under rather stationary cultural condition, while F1 required vigorous aeration. The polyglucanases may provide a useful measure for the prevention and control of dental plaque formation,  相似文献   

6.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):109-116
Two isoenzymes of chorismate mutase (EC 5.4.99.5) were isolated and partially purified from leaves of diploid (2n=24) Nicotiana silvestris Speg. et Comes and from isogenic cells in a suspension culture originally established from haploid tissue. An isoenzyme denoted CM-1 (M r=52,000) accounted for the major fraction of total activity recovered from suspension-cultured cells, while isoenzyme CM-2 (M r=65,000) represented the major fraction of activity recovered from green leaf tissue. The ratio of isoenzyme levels from these two sources differed more than 20-fold. The subcellular location of isoenzyme CM-1 is known to be in the chloroplasts of green leaves or in proplastids of cultured cells, while isoenzyme CM-2 is located in the cytosol. Both isoenzymes were stable during partial purification, possessed broad pH optima for catalysis between 6.0 and 8.0, and were active without denaturation at temperatures at least as high as 45° C. Thiol reagents were unnecessary for either stability or activity of both isoenzymes. The affinity of isoenzyme CM-2 for substrate (K m=0.24 mM) was almost an order of magnitude better than that of CM-1. The kinetic behavior of isoenzyme CM-1 was influenced by pH, while that of isoenzyme CM-2 was not. At pH 7.2, hyperbolic substrate-saturation curves (K m=1.7 mM) were obtained for isoenzyme CM-1. At pH 6.1, however, isoenzyme CM-1 displayed relatively weak positive cooperativity, Hill plots yielding an n value of 1.2 At pH 6.1 the half-saturation ([S]0.5) value was 2.5 mM.Abbreviations DEAE diethylaminoethyl - M r molecular weight  相似文献   

7.
Hypoxanthine-guanine phosphoribosyltransferase is a ubiquitous human enzyme, the inherited deficiency of which leads to a specific metabolic-neurological syndrome. Native acrylamide isoelectric focusing revealed that the human enzyme consists of different numbers of isoenzymes depending on the tissue of origin. The erythrocytic enzyme has the most isoenzymes while the enzyme from cultured fibroblasts has only a single isoenzyme. The isoenzyme pattern of the erythrocytic enzyme changes on storage of the crude hemolysate at 4 C. Treatment of the stored crude hemolysate with 4.5 m urea and 0.35 mm -mercaptoethanol results in an isoenzyme pattern similar to that of the fresh crude extract. Thus the additional isoenzymes are generated on storage not by covalent modification of the enzyme but probably by binding of small molecules to the enzyme or to association of the enzyme molecules. Hypoxanthine-guanine phosphoribosyltransferase has been purified to 80% homogeneity in three steps, DEAE Sephadex chromatography, heat treatment at 85 C for 5 min, and hydroxylapatite chromatography. Denaturing two-dimensional gel electrophoresis of the erythrocytic enzyme revealed that the erythrocytic enzyme is composed of three major types of subunits (1–3) with the same molecular weight but different isoelectric points. In contrast, the fibroblast enzyme is composed of only a single type of subunit, which comigrates with subunit 1 of the erythrocytic enzyme. Since there is a single genetic locus in humans for HGPRTase (the enzyme is X linked) (Nyhan et al., 1967), the observed subunit modification of the erythrocyte enzyme appears to be the result of posttranslational modification. These findings provide a simple explanation for the observed electrophoretic properties of human HGPRTase. A patient with 0.5% of HGPRTase activity in his erythrocytes was found to have small amounts (> 0.5% but < 5% of normal) of the erythrocytic HGPRTase subunits.This work was supported by a grant from NIAMDD, National Institutes of Health, United States Public Health Service. L. J. G. was supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   

8.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

9.
Lipases are serine hydrolases that catalyze in nature the hydrolysis of ester bonds of long chain triacylglycerol into fatty acid and glycerol. However, in favorable thermodynamic conditions, they are also able to catalyze reactions of synthesis such as esterification or amidation. The non-conventional yeast Yarrowia lipolytica possesses 16 paralogs of genes coding for lipase. However, little information on all those paralogs has been yet obtained and only three isoenzymes, namely Lip2p, Lip7p and Lip8p have been partly characterized so far. Microarray data suggest that only a few of them could be expressed and that lipase synthesis seems to be dependent on the fatty acid or oil used as carbon source confirming the high adaptation of Y. lipolytica to hydrophobic substrate utilization. This review focuses on the biochemical characterization of those enzymes with special emphasis on the Lip2p lipase which is the isoenzyme mainly synthesized by Y. lipolytica. Crystallographic data highlight that this latter is a lipase sensu stricto with a lid covering the active site of the enzyme in its closed conformation. Recent findings on enzyme conditioning in dehydrated or liquid formulation, in enzyme immobilization by entrapment in natural polymers from either organic or mineral origins are also discussed together with long-term storage strategies. The development of various biotechnological applications in different fields such as cheese ripening, waste treatment, drug synthesis or human therapeutics is also presented.  相似文献   

10.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

11.
Summary Neutrophil alkaline phosphatase (NAP) was analysed in 25 pregnant women with trisomy 21 foetuses whose chromosomal aberration was recognized by cytogenetic study after amniocentesis. Enzyme investigation was performed at 20–22 weeks of gestation using cytochemical and biochemical techniques. Twenty-nine women at the same stage of normal pregnancies were selected as controls. In parallel, each mother was karyotyped. Ten subjects from each series underwent biochemical and immunological investigation: measurement of enzyme levels, thermostability study and immunological tests with alkaline phosphatase isoenzyme antibodies. NAP from pregnant women with trisomy 21 foetuses was characterized by: (1) a lower rate of enzyme activity, (2) a large amount of heat-stable enzyme (T=56°C for biochemical assays, T=85°C for cytochemical tests), and (3) a marked loss of liver antigenicity. These findings suggest the presence in trisomy 21 pregnancies of a non-specific alkaline phosphatase isoenzyme which appears as an enzyme marker in maternal circulating neutrophils.  相似文献   

12.
The isoenzymes of hypoxanthine-guanine-phosphoribosyl transferase (HGPRT; E. C. 2.4.2.8) were studied by polyacrylamide gel disc electrophoresis in the erythrocytes of a family in which there was a partial deficiency of this X-linked enzyme. Hyperuricemic males, in whom HGPRT activity was 4% of normal, were found to have a variant enzyme which had altered kinetic and electrophoretic properties. In acrylamide gel, this variant migrated about 15% faster than the normal enzyme, and its K m for hypoxanthine was twice that of the normal. The sister of two patients had 34% of normal activity in her erythrocytes and was thought to be a heterozygote. Electrophoresis of her hemolysate yielded profiles in which there were two zones of HGPRT activity. The more slowly migrating isoenzyme behaved electrophoretically like the normal isoenzyme. The faster-migrating isoenzyme had a mobility identical to that of the variant enzyme found in hemolysates from her hyperuricemic siblings. However, in her profile the activity of the variant enzyme was three times greater than that of the HGPRT found in the boys. This increased activity appears to be due to an interaction of the variant enzyme with the normal enzyme. Electrophoresis of a mixture of normal enzyme and the variant from a hyperuricemic male yielded a profile similar to that observed in this girl and a dramatic increase in the amount of activity in the variant zone.Aided by U.S. Public Health Service Grants No. HD04608 and GM 17702 from the National Institute of Child Health and Human Development and from the National Institute of General Medical Sciences, respectively, National Institutes of Health. Presented in part at the 1971 Annual Meeting of the Western Society for Pediatric Research, Carmel, California.  相似文献   

13.
Summary 13C Nuclear magnetic resonance and fumarase and NAD-malate dehydrogenase isoenzyme studies were carried out in a strain of A. flavus which produces relatively high levels of l-malic acid from glucose. The results of the 13C NMR showed that the 13C label from [1-13C] glucose was incorporated only to C-3 (-CH2-) of l-malic acid and indicated that this acid must be synthesized from pyruvate mainly via oxaloacetate. Electrophoretic analysis has established the presence of unique mitochondrial and cytosolic isoenzymes for fumarase and malate dehydrogenase. Changes in the isoenzyme pattern were observed for malate dehydrogenase but not for fumarase during acid production. Cycloheximide inhibited profoundly both l-malic acid production and the increase in the major isoenzyme of malate dehydrogenase, without affecting either the total activity of fumarase or its isoenzyme pattern. The results suggested that de novo protein synthesis is involved in the increase in the activity of the major isoenzyme of malate dehydrogenase and that this isoenzyme is essential for l-malic acid production and accumulation.  相似文献   

14.
Summary The activity of glutamate synthetase (GS) was determined in the different organs ofLathraea clandeslina L., a holoparasitic Scrophulariaceae. It was very low throughout the plant but levels were slightly higher in the scale leaves. Immunoprecipitation reactions carried out with immune serums raised against the isoforms GS1 or GS2 of the enzyme showed that, in the scale leaves, isoenzyme GS1 was present, but the existence of small amounts of GS2 remained in question on account of possible cross reactions. On the other hand, the study of intracellular localization of GS in the scale leaves by indirect immunofluorescence, using the same antibodies anti-GS1 and anti-GS2, clearly demonstrated the occurrence of two GS forms: a GS1 isoenzyme located in the cytoplasm of glandular and parenchymatous cells and a GS2-type isoenzyme only detected in the stroma of the large amyloplasts present in the outer parenchyma. This amyloplastidial isoenzyme seems to be a peculiar GS form, distinct from both GS1 and GS2.Abbreviations GS glutamate synthetase - GS1, GS2, GSR glutamate synthetase isoforms - PBS phosphate buffered saline - PEG poly ethylene glycol - GP peltate glands - GB shield glands - P amyloplasts  相似文献   

15.
A thermostable isoenzyme (T80) of xylose isomerase from the eukaryote xerophyte Cereus pterogonus was purified to homogeneity by precipitation with ammonium sulfate and column chromatography on Dowex-1 ion exchange, with Sephadex G-100 gel filtration, resulting in an approximately 25.55-fold increase in specific activity and a final yield of approximately 17.9%. Certain physiochemical and kinetic properties (Km and Vmax) of the T80 xylose isomerase isoenzyme were investigated. The molecular mass of the purified T80 isoenzyme was 68 kD determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyclonal antibodies against the purified T80 isoenzyme recognized a single polypeptide band on Western blots. The activation energy required for the thermal denaturation of the isoenzyme was determined to be 61.84 KJ mol?1. The use of differential scanning calorimetry established the melting temperature of the CPXI isoenzyme to be 80°C, but when studied with added metal ions, melting temperature increases to more than the normal. Fluorescence spectroscopy of T80 isoenzymes yielded an emission peak with λem at 320 nm and 340 nm, respectively, confirming the presence of Trp residue in these proteins. Electron paramagnetic resonance (EPR) analysis at liquid nitrogen temperature established the presence of Mn2+ and Co2+ associated with each isoenzyme. These enzyme species exhibited different thermal and pH stabilities compared to their mesophilic counterparts and offered greater efficiency in functioning as a potential alternate catalytic converter of glucose in the production of high-fructose corn syrup (HFCS) for the sweetener industry and for ethanol production.  相似文献   

16.
Summary We isolated an Escherichia coli K-12 regulatory mutation affecting the acetohydroxy acid synthase III isoenzyme. This mutation was found to lie outside the structural genes ilvHI for this isoenzyme and was designated lrs-1. A strain carrying this mutation was found to be altered in the leucine-mediated control of ilvHI mRNA and acetohydroxy acid synthase III synthesis observed in the isogenic lrs + strain. These alterations appeared to be a consequence of a reduced intracellular concentration of a single one of five tRNALeu isoaccepting species.  相似文献   

17.
α-1,4-Glucan phosphorylase (EC 2.4.1.1) forms from light or dark grown shoots of Pisum sativum L. cv. 'Kleine Rheinländerin' have been studied using various electrophoretic techniques. The phosphorylase patterns of green and etiolated shoots differed. Etiolated shoots contained two enzyme forms, one residing inside and the other outside the etioplast; this was shown by electrophoresis of extracts of isolated etioplasts. Purity and intactness of the organelle preparation were ascertained by electron microscopy. Light-grown shoots contained, in addition to these two enzyme forms, a third phosphorylase which appears to be chloroplast-specific. The two plastidic phosphorylase forms differed slightly in their apparent molecular masses (as determined by non-denaturing polyacrylamide gel electrophoresis) and in their affinities towards branched polyglucans (as revealed by affinity electrophoresis). The apparent affinity of the extrachloroplastic phosphorylase form to these polyglucans was orders of magnitude higher than that of the two plastidic enzyme forms. The development of the chloroplast-specific phosphorylase pattern is under photocontrol. Investigations performed with red or far-red illuminated wild-type plants and with a pale mutant which has a highly reduced pigment and thylakoid content suggest that this photocontrol is mediated by phytochrome.  相似文献   

18.
Cells exposed to temperature a few degrees higher than their growth temperature synthesize heat shock proteins (hsp) which may then compose even 20% of total protein content. This paper examined the in vitro protective effect of heat shock protein DnaK (70 kDa) from Escherichia coli against the heat inactivation of lactate dehydrogenase isoenzyme LDH-A4. The LDH-A4 isoenzyme was purified from fish skeletal muscle using the affinity chromatography on Oxamate-agarose. The enzyme was then heated in the absence and the presence of DnaK protein in a water bath at either 51 or 55°C. The LDH activity was determined by measuring the change in absorbency at 340 nm min−1 at 30°C. The addition of DnaK protein to the LDH-A4 isoenzyme before heat treatment can protect enzyme activity against mild thermal inactivation. Incubation of the LDH-A4 isoenzyme at 51°C in the presence of DnaK protein stimulates its activity by about 30%. The presence of 2 mM ATP can raise LDH activity by another 10%. No significant recovery was observed when DnaK protein was added to LDH at 25°C following earlier inactivation. The maximal activities (Vmax) in the presence of DnaK protein are almost twice those without DnaK protein in the case of heat-treated LDH-A4 isoenzyme at 51°C. The observed protection of LDH-A4 activity increased with the increasing DnaK protein concentration in the incubation medium. Results suggested that the presence of DnaK protein can protect LDH-A4 from heat inactivation. This action may be important as a part of cellular chaperone machinery capable of repairing heat-induced protein damage. It may have a fundamental role in the acquisition of the thermotolerance to stress temperatures.  相似文献   

19.
Methanosarcina barkeri was recently shown to contain two cytoplasmic isoenzymes of methylcobalamin: coenzyme M methyltransferase (methyltransferase 2). Isoenzyme I predominated in methanol-grown cells and isoenzyme II in acetate-grown cells. It was therefore suggested that isoenzyme I functions in methanogenesis from methanol and isoenzyme II in methanogenesis from acetate. We report here that cells of M. barkeri grown on trimethylamine, H2/CO2, or acetate contain mainly isoenzyme II. These cells were found to have in common that they can catalyze the formation of methane from trimethylamine and H2, whereas only acetate-grown cells can mediate the formation of methane from acetate. Methanol-grown cells, which contained only low concentrations of isoenzyme II, were unable to mediate the formation of methane from both trimethylamine and acetate. These and other results suggest that isoenzyme II (i) is employed for methane formation from trimethylamine rather than from acetate, (ii) is constitutively expressed rather than trimethylamine-induced, and (iii) is repressed by methanol. The constitutive expression of isoenzyme II in acetate-grown M. barkeri can explain its presence in these cells. The N-terminal amino acid sequences of isoenzyme I and isoenzyme II were analyzed and found to be only 55% similar.Abbreviations H-S-CoM coenzyme M or 2-mercaptoethane-sulfonate - CH3-S-CoM methyl-coenzyme M or 2(methylthio)-ethanesulfonate - [Co] cobalamin - CH3-[Co] methylcobalamin - H4MPT tetrahydromethanopterin - CH3-H4MPT N 5-methyltetrahydromethanopterin - MT1 methyltransferase 1 or methanol: 5-hydroxybenzimidazolyl cobamide methyltransferase - MT2 methyltransferase 2 or methylcobalamin: coenzyme M methyltransferase - Mops morpholinopropanesulfonate - 1 U = 1 mol/min  相似文献   

20.
Two isoenzymes of phosphoglucomutase from spinach (Spinacia oleracea L.) leaves can be separated by ammonium-sulfate gradient solubilization or DEAE-cellulose ion exchange chromatography. They were designated as phosphoglucomutase 1 and 2, according to decreasing electrophoretic mobility towards the anode at pH 8.9. Phosphoglucomutase 1 is localized in the stroma of the chloroplasts, phosphoglucomutase 2 is a cytosolic enzyme as judged from aqueous cell fractionation studies. Both isoenzymes have very similar properties such as dependence on MgCl2, pH activity profile, and Km for glucose-1-phosphate and glucose-1,6-bisphosphate. From sedimentation-velocity analysis a molecular weight of 60,000 was estimated for either isoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号