首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dicotyledonous plants subjected to Fe-deficiency stress can decrease pH in the rhizosphere by proton excretion and reduce ferric iron by an activated reduction system in the plasma membranes of the root or by reductants released from the roots. The efficiency by which these plants take up Fe may strongly depend on their cation-anion balance. This study presents results of two experiments conducted to evaluate the effect of K, growth stage and cultivar on ionic balance and Fe acquisition of peanut (Arachis hypogaea L.) plants.Potassium applications to the high calcareous soil (30.3% CaCO3) favoured proton release, but did not ameliorate plant Fe acquisition. At the earliest stages of plant growth, anion uptake exceeded cation uptake due to intensive N uptake. With time, a shift in the ionic balance was observed as a result of predominant cation uptake. It appears that the relationship between H/OH-ion release and Fe nutrition of peanut plants is actually a complex phenomenon under soil conditions and depends on some soil parameters, such as CaCO3 content. Even by enhanced H-ion release Fe nutrition of plants can be impaired if soil CaCO3 is too high.  相似文献   

2.
To identify why tree growth differs by afforestation type is a matter of prime concern in forestry. A study was conducted to determine why oriental arborvitae (Platycladus orientalis) grows better in the presence of black locust (Robinia pseudoacacia) than in monoculture. Different types of stands (i.e., monocultures and mixture of black locust and oriental arborvitae, and native grassland as a control) were selected in the Loess Plateau, China. The height and diameter at breast height of each tree species were measured, and soil, shoot, and root samples were sampled. The arbuscular mycorrhizal (AM) attributes, shoot and root nutrient status, height and diameter of black locust were not influenced by the presence of oriental arborvitae. For oriental arborvitae, however, growing in mixture increased height and diameter and reduced shoot Mn, Ca, and Mg contents, AM fungal spore density, and colonization rate. Major changes in soil properties also occurred, primarily in soil water, NO3‐N, and available K levels and in soil enzyme activity. The increase in soil water, N, and K availability in the presence of black locust stimulated oriental arborvitae growth, and black locust in the mixed stand seems to suppress the development of AM symbiosis in oriental arborvitae roots, especially the production of AM fungal spores and vesicles, through improving soil water and N levels, thus freeing up carbon to fuel plant growth. Overall, the presence of black locust favored oriental arborvitae growth directly by improving soil water and fertility and indirectly by repressing AM symbiosis in oriental arborvitae roots.  相似文献   

3.
Field experiments were conducted during the rainy reasons of 1989, 1990 and 1991 on an acid sandy soil in Niger, West Africa, to assess the effect of millet straw application (+CR) on growth and N2 fixation of groundnut (Arachis hypogaea L.).Three years of +CR (4 t ha–1 yr–1) increased symbiotic N2 fixation, total dry matter production (haulm plus pods) by 83% and total nitrogen (N) accumulation by 100%. Concentration of N in the shoot dry matter and total N in the soil were only slightly affected by the +CR treatment.Crop residue application increased the concentration of potassium (K) and molybdenum (Mo) and decreased the concentrations of aluminium (Al) and manganese (Mn) distinctly, both in the plant (shoot and nodule dry matter) and in the soil.The increase in dry matter production and N uptake was mainly due to improved N2 fixation reflected by enhanced formation and growth of nodules as well as nitrogenase activity. This was attributed to improved chemical soil conditions, particularly to the higher availability of Mo and the lowered content of available Al and Mn.Although with the application of 4 t CR ha–1, 60 kg K were supplied, increased growth could not be attributed to the additional supply of K.ICRISAT Journal Article No. 1229.ICRISAT Journal Article No. 1229.  相似文献   

4.
Summary PI54619-5-1 soybeans (Glycine max L.), which are very susceptible to Fe deficiency, were grown for 24 days in calcareous (10%) Hacienda loam soil with different levels of S each with and without 2 ppm Fe added as FeEDDHA (ferric ethylenediamine di (o-hydroxyphenylacetic acid). The S application rates ranged from sufficient to neutralize about 15% to more than all of the CaCO3 present if the S were all oxidized. The soil pH values at harvest time ranged from 7.4 to 6.0. The highest S rate was 10% by weight of soil and it overcame Fe deficiency without FeEDDHA. The S treatments resulted in increased concentrations of Fe and other metals in leaves, but the FeEDDHA treatments increased yields more than did S. At the lower levels of S, the effects of S and FeEDDHA on Fe concentrations in leaves were additive, but not at the highest level of S. The FeEDDHA overcame much of the effect that S had on increasing Mn concentrations in leaves. It had a similar effect, particularly at the low S levels, on Zn, Cu, Al, B, and Ni concentrations in leaves. A level of S sufficient to neutralize only 15% of the CaCO3 of the soil increased leaf concentrations of Fe, Mn, Zn, Cu, Al, B, Ni, Si, and P. The effect for Zn, Cu, and Al appreared maximum at this level. A combination of the1/2% S and the FeEDDHA resulted in the most favorable micronutrient balance. Bush beans (Phaseolus vulgaris L. var. Improved Tendergreen) grown in calcareous soil with S insufficient to neutralize all the CaCO3 had increased Mn, Ni, and Mo and decreased Ba levels in leaves. CaSO4 as a source of S did not have the same effects as elemental S.  相似文献   

5.
荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征   总被引:8,自引:4,他引:8  
张珂  苏永中  王婷  刘婷娜 《生态学报》2016,36(11):3235-3243
为阐明梭梭建立对林下土壤养分化学计量特征的影响,分析了2、5、9、13、16、31、39a荒漠绿洲区梭梭林灌丛下和流沙区(0a)土壤有机碳(SOC)、全氮(TN)、全磷(TP)、碳酸钙(CaCO_3)、速效磷(Available P)含量及其化学计量特征变化规律。结果显示:1)SOC和TN在9a后出现显著的成层化分布,而TP的这一特征相对滞后;不同土壤深度SOC、TN均随林龄增加而显著增加,而TP未表现出明显变化。2)C∶P和N∶P在9a后表现出明显的成层化分布且不同土层C∶P和N∶P随林龄增加显著增加,而C∶N保持相对稳定。3)较低含量的Available P在2a后即表现出0—5 cm含量大于5—20 cm且表层Available P和CaCO3随林龄增加而显著增加。而Ca CO3∶Available P在不同林龄间并未发生显著变化。4)随林龄增加,土壤表层风蚀可蚀性极显著降低且与土壤表层养分含量呈显著的负相关关系。以上结果表明,梭梭的建立提高了土壤SOC和TN含量且随林龄增加变化更显著,而变化较小的C∶N说明土壤氮的形成需要固定比例的碳。变化幅度较小的TP说明主要来源于岩石风化的磷素受时间作用的限制,而较低含量的Available P和变化幅度较小的CaCO_3∶Available P则表明梭梭的生长受P的限制且有限的Available P易被CaCO_3固定。另外,土壤养分含量与土壤风蚀可蚀性显著的负相关关系,进一步说明梭梭的建立改善了土壤质地,增加了土壤养分含量,这对荒漠绿洲区土壤恢复和植被建设有极大的促进和指导作用。  相似文献   

6.
Brand  J.D.  Tang  C.T.  Graham  R.D. 《Plant and Soil》2000,224(2):207-215
Two glasshouse experiments were conducted to examine the effects of nutrient supply and rhizobial inoculation on the performance of Lupinus pilosus genotypes differing in tolerance to calcareous soils. In experiment 1, plants were grown for 84 days in a calcareous soil (50% CaCO3; soil water content 90% of field capacity) at four nutrient treatments (no-added nutrients, added nutrients without Fe, added nutrients with soil applied FeEDDHA, added nutrients with foliar applied FeSO4). In experiment 2, plants were grown for 28 days with supply of NH4NO3 without inoculation or inoculated with Bradyrhizobium sp. (Lupinus). Chlorosis in the youngest leaves was a good indicator of the relative tolerance of the genotypes to the calcareous soil in both experiments, except the treatment with FeEDDHA at 5 mg kg–1 soil which was toxic to all genotypes. Chlorosis scores correlated with chlorophyll meter readings and chlorophyll concentrations. The foliar application of FeSO4 did not fully alleviate chlorotic symptoms despite concentrations of active or total Fe in the youngest leaves being increased. Adding nutrients and chemical nitrogen did not change the severity of chlorosis or improve the growth of the plant. The nutrient supply did not alter the ranking of tolerance of genotypes to the calcareous soil. The results suggest that nutrient deficiency or poor nodulation was not a major cause of poor plant growth on calcareous soils and that bicarbonate may exert a direct effect on chlorophyll synthesis. The mechanism for tolerance is likely to be related to an ability to exclude bicarbonate or prevent its transport to the leaves.  相似文献   

7.
Sulphur fractionation and availability to plants are poorly understood in calcareous soils. Sixty-four calcareous soils containing varying amounts of CaCO3 were collected from ten provinces in China and their S fractions determined. Organic S was the predominant fraction of S, accounting for on average 77% of the soil total S. The amounts of adsorbed sulphate were found to be negligible. 1 M HCl extracted substantially more sulphate than either 0.01 M CaCl2 or 0.016 M KH2PO4, indicating the existence of water-insoluble but acid-soluble sulphate, probably in the form of sulphate co-precipitated with CaCO3. The concentrations of water-insoluble sulphate correlated positively with the contents of CaCO3 and accounted for 0.03–40.3% (mean 11.7%) of soil total S. To test the bioavailability of water-insoluble sulphate, a sulphate-CaCO3 co-precipitate labelled with 35S was prepared and added to a calcareous soil in a pot experiment with either NH4+ or NO3 as the N source. In 29 days, wheat plants took up 10.6% and 3.0% of the 35S added to the soil in the NH4+ and NO3 treatments, respectively. At the end of the pot experiment, the decrease of water-insoluble, acid-soluble, sulphate was more apparent in the NH4+ than in the NO3 treatment. The results indicate that sulphate co-precipitated with CaCO3 in calcareous soils may become partly available for plant uptake, depending on rhizosphere pH, if the field precipitate is similar to the laboratory prepared sample studied.  相似文献   

8.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

9.
A pot experiment was investigated to study the effect of sewage irrigation treatments (primary and secondary effluents) compared with tap water on the growth and chemical constituents of mahogany seedlings (Swietenia mahagoni (L.) Jacq.) as well as soil chemical properties. The experiment was conducted at a greenhouse in the nursery of Timber Trees Research Department of Sabahia, Horticultural Research Station in Alexandria, Egypt, from June 2003 to December 2004 for three irrigation periods (6, 12 and 18 months). The sewage effluent waters were taken from oxidation ponds located in New Borg EL-Arab city and used directly for irrigation.The primary effluent treatment was superior than other treatments in improving the growth parameters (plant height, stem diameter, leaf area, leaves number, fresh and dry weights of leaves, shoots and roots and shoot/root ratio) and showed the highest concentration and total uptake of N, P, K, Cd, Ni, Pb and Fe in plant parts, followed by secondary effluent then tap water. The data revealed that soil salinity in terms of electrical conductivity of saturated paste (EC), CaCO3%, organic matter% and soluble anions and cations were influenced significantly by primary or secondary effluent treatment. The data also showed that the use of sewage effluent for irrigation increased N, P, K and DTPA-extractable-heavy metals (Cd, Cu, Ni, Pb, Fe, Mn and Zn). The effects of sewage effluent on growth parameters and elements content in plant parts and treated soil were more pronounced as water treatments were used for long period.The results suggested that the use of sewage effluent in irrigating mahogany trees grown on calcareous sandy loam soil was an important agriculture practice for improving soil properties, increasing fuel and timber production, and is an economic and safe way to dispose wastewaters.  相似文献   

10.
Rodenkirchen  H. 《Plant and Soil》1995,168(1):383-390
The effects of fertilization and amelioration treatments on some nutrient pools and fluxes of ground vegetation in mature pine and spruce stands on acid soils in South Germany are described. In N-limited pine forests with moderate canopy density and with Deschampsia flexuosa an additional N-accumulation in biomass of 20–40 kg ha-1 occurred 3 years after pure N-fertilization. The N, P, K-cycling through ground vegetation was stimulated more than 10 years by a combined N + CaCO3 + P treatment leading toa shift in dominance from cryptogams and Ericaceae towards Deschampsia flexuosa and ruderal species like Epilobium angustifolium. The effect of a lupine treatment (combined with initial soil preparation, liming and P supply) was far stronger than the effect of the other experimental procedures. But the fertilizer and amelioration effects on the herb layer of pine forests tended to decline after two decades for different reasons.The shade-tolerant ground vegetation in a nitrogen-saturated spruce forest was not able to prevent heavy additional nitrate losses from upper mineral soil after dolomitic liming. But the Ca, Mg and K fluxes through ground vegetation were strongly elevated in the third year after treatment.  相似文献   

11.
Summary A nitrogen deficient Oxisol which had been fertilized with P, K, Zn and Mo received CaCO3 at rates which increased continuously from zero to 22 tons/ha. Liming produced a range of pH in the saturation paste from 4.7 to 7.1; a range of calcium in the saturation extract from 0.3 to 3 meq/l; and a significant decline in available manganese. Responses of 9 tropical and 7 temperate legumes were compared across the pH variable.For Stylosanthes spp. nodule numbers and weight and plant yield declined above pH 5.5. Arachis hypogaea and Vigna sinensis, whose yield increased by only 30%, showed no clear improvement in nodulation or nodule effectiveness (acetylene reduction rate per unit nodule weight).Increased nodule effectiveness could account for most of the growth increase in Dolichos axillaris and Glycine max var. Kahala. Both the number and effectiveness of nodules increased for Desmodium intortum, Glycine wightii, Medicago sativa, and Trifolium subterraneum. Nodule size and effectiveness increased for G. max var. Kanrich. Only in one species, Coronilla varia, could increase in nodule numbers alone account for the increased growth associated with liming, although increased numbers of nodules probably accounted for much of the response by Lotus corniculatus, and by Desmodium canum and D. intortum up to pH 5.3.Increased nodulation and plant N contents were consistent with the conclusion that for most species improved N2-fixation was the cause of growth improvement associated with liming. However, percent N was high in leaves of Vigna and Phaseolus vulgaris at all lime levels. In Phaseolus, variation in nodulation and growth were unrelated. The growth improvement was associated with decline in leaf N, suggesting that something other than N nutrition was limiting.Journal Series No. 1957 of the Hawaii Agricultural Experiment Station.Department of Soils and Plant Nutrition, University of California, Davis.Department of Agronomy and Soil Science, University of Hawaii, Honolulu, Hawaii.  相似文献   

12.
Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P < 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (>98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P. Received: 12 July 1997 / Accepted: 15 April 1998  相似文献   

13.
郭涛  张思兰 《生态学报》2017,37(10):3553-3560
植株残体降解可直接或间接地影响土壤磷素的有效性,为探讨不同磷浓度植株残体降解对紫色土磷分级体系的影响,结合31P核磁共振分析技术,选取了3种磷浓度不同的植物残体与两种紫色土进行室内模拟培养试验,得出了以下研究结论:(1)添加植株残体显著增强了紫色土呼吸强度,且紫色土分级体系中的活性磷含量均高于对照处理(2)31P-NMR分析结果得知,植株残体的正磷酸盐、磷酸单酯占浓缩液全磷比例的90%以上,高磷植株的正磷酸盐和磷酸单酯含量显著高于中磷和低磷植株,土壤磷素有效性的变化与植株残体的正磷酸盐和磷酸单酯含量有关;(3)紫色土分级体系中的活性磷在0 d含量最高,随着培养周期的延长,土壤磷素有效性会出现降低的趋势;酸性紫色土的累积呼吸强度、分级体系中活性磷(Resin-P、Na HCO3-Pt)所占比例均高于中性紫色土,与土壤钙含量有关。综上所述,植株残体的磷浓度越高,更有利于提高土壤磷素的有效性,本研究结果为农业生产中秸秆还田技术提供了理论参考。  相似文献   

14.
Experiments carried out in lysimeters filled with two calcareous clayey soils (ca 40% CaCO3; ca 40% clay), showed that a 2m layer of soil almost completely removed the organic and inorganic components of olive oil mill wastewater (OMW) when it was applied in doses of 5000–10000m3ha−1year−1. This efficiency was maintained for at least 2 years. In field experiments, the application of OMW to one of these soils during three successive years at an annual rate of up to 6000m3ha−1 caused changes in some chemical properties of the soil, especially in the upper layer (0–50cm). Concentrations of soil organic matter, Kjeldahl N, soluble NO3 and available P increased enhancing soil fertility. On the other hand, soil electrical conductivity and sodium adsorption ratio also increased but below the levels representing salinization or sodification hazard for the soil. Furthermore, leaching of Na+ and NO3 below the 1 m layer were detected.  相似文献   

15.
林婉奇  蔡金桓  薛立 《生态学报》2019,39(24):9162-9170
研究氮磷添加对不同密度樟树(Cinnamomum camphora)幼苗土壤化学性质的影响,以期为全球化背景下樟树人工林生态系统的土壤养分管理提供依据。以1年生樟树幼苗为试验材料,选择氯化铵(NH4Cl)作为氮肥模拟大气氮沉降,以二水合磷酸二氢钠(NaH_2PO_4·2H_2O)模拟磷添加。氮磷处理设置CK、施N、施P和施N+P 4个水平,其中N、P和N+P施肥量分别为40 g m~(-2)a~(-1)(NH_4Cl)、20 g m-2a-1(NaH_2PO_4·2H_2O)和40g m~(-2)a~(-1)(NH_4Cl)+20 g m~(-2)a~(-1)(NaH_2PO_4·2H_2O)。种植密度设置4个水平:10、20、40和80株/m~2,试验时间为2017年6月至9月。研究结果表明,在各密度幼苗土壤中,N和N+P处理引起pH值的显著下降,N、P和N+P处理的土壤有机质和碱解N含量的变化规律不明显,P处理的幼苗土壤全P含量上升,P和N+P处理的土壤有效P含量增加,N+P处理的土壤全K含量以及N、P和N+P处理的土壤速效K含量均下降。在10、20和40株/m~2幼苗的土壤中,P处理的土壤全N含量高于N和N+P处理的,而80株/m~2幼苗的土壤全N含量低于其他密度幼苗。随着种植密度的增加,各施肥处理的土壤pH、全P、有效P、全K和速效K含量均呈现上升趋势,而施N和施P处理的土壤有机质呈现下降趋势,各施肥处理的土壤碱解N含量变化规律不明显。施肥和密度处理对樟树幼苗土壤有机质、碱解氮和速效钾含量有显著的交互作用。  相似文献   

16.
Summary Field studies were conducted to assess the mineral nutrition and growth of Colorado spruce (Picea pungens Engln) seedlings (2–4 yr) from provenances selected for superior growth on calcareous prairie soils. Tissue nutrient concentrations and response to nitrogen were determined by use of foliar analysis and growth pattern studies. Soil conditions ranged from 7.6–7.8 for pH, 12–23% for total CaCO3, and 5–6% for active CaCO3. Foliage mineral composition showed relatively low phosphorus (0.09–0.15%) and high calcium (0.45–1.52%) assimilation. Seasonal growth and seedling response to added nitrogen was not adversely affected by the calcareous soil condition. Levels of nitrogen in the foliage required for optimum growth ranged from 1.5–2.0% and were similar to that of other conifer species.  相似文献   

17.
Brand  J. D.  Tang  C.  Rathjen  A. J. 《Plant and Soil》2002,245(2):261-275
Soil- and solution-based screening methods were used to identify interspecific and intraspecific variation in lupins for tolerance to calcareous soils. Plants were grown for 21 days in a calcareous soil (pH 8.2; 50% CaCO3; moisture content 90% of field capacity) for soil-based screening and in nutrient solution containing 15 mM KHCO3 for solution-based screening. Chlorosis as an indicator of tolerance was recorded. Lupinus pilosus Murr. had the most tolerant genotypes and had the greatest range of intraspecific variation. Most genotypes of Lupinus atlanticus Glads. and Lupinus angustifolius L. were moderately intolerant, although two genotypes of L. atlanticus appeared to be tolerant. Lupinus albus L. had moderately tolerant to moderately intolerant genotypes, whilst the single genotypes of Lupinus cosentinii Guss. and Lupinus digitatus Forsk. appeared tolerant. In a field study six genotypes of L. pilosus identified in the soil-based screening as differing in their tolerance to the calcareous soil were grown on comparable calcareous (pH 8.3; topsoil 3% CaCO3, subsoil 13% CaCO3) and non-calcareous (pH 7.3) soils within a paddock. Chlorosis and nutrient concentrations in the youngest leaves were measured 53 days after sowing, whilst grain yield was estimated at harvest. Despite the soil containing a much lower CaCO3 content than used in the screening method, the field study confirmed that moderately intolerant to intolerant genotypes had lower relative grain yields than more tolerant genotypes. Chlorosis rankings of the genotypes were correlated between field and the screening studies. It is suggested that the incorporation of genes conferring tolerance to calcareous soils into high yielding, agronomically suitable genotypes of L. pilosus should be an important objective in a lupin breeding program for calcareous soils.  相似文献   

18.
Studies on sulphur in vertisols   总被引:1,自引:0,他引:1  
Summary Some soil and plant test methods were evaluated for predicting response of soybean crop (Glycine max (L.) Merr.) to S application in vertisols. Morgan's reagent, 500 ppm P containing Ca(H2PO4)2.H2O and KH2PO4 solutions, 0.5N NH4OAc+0.25N HOAc and 0.15% CaCl2 were found to be suitable extractants for measuring available soil S. The critical limits of extractable S were 9.0 ppm by Morgan's reagent, 10.0 ppm by phosphate solutions, 8.0 ppm by 0.5N NH4OAc +0.25N HOAc and 14.0 ppm by 0.15% CaCl2. Morgan's reagent was regarded as superior to other soil test methods in view of its high relationship with S uptake by plants, A values and relative yield. Critical S concentration in soybean plants varied with age. It was 0.15% and 0.185% for 36 and 60 days old plants, respectively. The critical N/S ratio on the other hand appeared to be constant at about 16.5 during vegetative growth period. Constancy of critical N/S ratio in plants was attributed to the near constancy of N/S ratio in plant proteins. There was highly significant relationship between response of soybean to S and to N, supporting the conclusion of some earlier workers that any soil showing large responses to N may not be supplying adequate S from the mineralization of soil organic matter.  相似文献   

19.
Non-nitrogenous mineral nutrients may be an important constraint on forest productivity and belowground processes in many ecosystems. We measured responses of soil CO2 efflux (FCO2), fine root production, and root-free incubation soil respiration to experimental additions of non-nitrogenous mineral nutrients (phosphorus (P) + potassium (K) fertilizer, dolomitic lime, and P + K plus lime) over 2 years in a sugar-maple-dominated forest in central Ontario; this region receives some of the highest anthropogenic nitrogen (N) inputs in North America, and evidence exists for co-limitation by P, magnesium (Mg), and calcium (Ca) of the growth of dominant trees. Soil amendments, in particular P + K fertilization, reduced FCO2, fine root production and microbial respiration, with decreases in FCO2 of 28–51% in fertilized compared to control plots. Partial regression analyses indicated that soil available P had a negative effect on FCO2, fine root production, and microbial respiration, but detected no significant effects of N, Ca, or Mg. Path analysis further suggested that available P reduced both fine root production and microbial respiration, and that these effects were largely responsible for reduced FCO2. There was also a residual direct negative relationship between available P and FCO2, which may represent reduced metabolic activity of roots. The study indicates that P is a critical nutrient dominating belowground processes in an N-saturated forest ecosystem, and suggests that additions of P may enhance C sink strength in managed forests in part through reductions in soil CO2 efflux.  相似文献   

20.
Summary The relationship between Mo content in red clover leaves and available Mo in two different soil series of volcanic ash origin (Iwate-san and Hizume soils) was studied.If results were treated separately for each soil series, positive single correlations were obtained between leaf Mo and soil Mo extracted by Grigg's pH 3.3, 0.55N ammonium oxalate method. Correlation between leaf Mo and soil Mo was not significant if data from both soil series were combined. This relationship appeared to be due to several factors. First, the recovery of added Mo was lower in Hizume soils than in Iwate-san soils. This tendency for Mo fixation was confirmed by a pot experiment. Second, the amount of Fe as free hydrous Fe oxides dissolved in the acidic ammonium oxalate extract was higher in Hizume soils than in Iwate-san soils. This was negatively correlated with leaf Mo content. Therefore, the multiple correlation and regression between leaf Mo of red clover and available Mo, free hydrous Fe oxides and Mo recovery of soils gave satisfactory results even if data from both soils were combined.However, in the two soils used in this study, extraction at pH 3.3 failed to give the highest yield of Mo. They were obtained at much lower pH even though the concentration of organic acid remained constant. This was particularly clear in Iwate-san soils. The acidic ammonium oxalate extraction procedure tends to underestimate soil Mo availability in these kinds of soils, especially in extraction of Iwate-san soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号