首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various unsaturated fatty acids had different effectiveness for maintaining the continued replication of functional mitochondria in an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae (KD115). Certain isomers of octadecenoic acid (i.e., cis-9) and eicosatrienoic acid (i.e.,cis-8,11,14) permitted continued replication of mitochondria and provided cultures that contained only 4 to 5% cells that formed petite colonies. On the other hand, cultures grown with cis-12- or cis-13-octadecenoic acid or cis-11,14,17-eicosatrienoic acid, produced a 12- to 16-fold greater frequency of petite mutants (50-60%) after 8 to 10 generations of growth. The production of the petite mutants occurred despite adequate incorporation of these unsaturated fatty acids into cellular phospholipids and an apparently normal ability to undergo the initial steps in the induction of cellular respiration. The evidence suggests that some cellular processes necessary for continued mitochondrial replication depend on the structural features of the fatty acyl chains as well as the overall content of unsaturated fatty acids in membrane phospholipids. Impairment of that process by certain inadequate fatty acids or by an inadequate supply of a suitable fatty acid leads to a permanent loss of the mitochondrial genome from the cells of subsequent generations.  相似文献   

2.
1. The fatty acid composition of the ole-1 and ole-1 petite mutants of Saccharomyces cerevisiae was manipulated by growing the organism in the presence of defined supplements of Tween 80 or by allowing cells that had first been grown in the presence of Tween 80 to deplete their unsaturated fatty acids by sequent growth in the absence of Tween 80. 2. The transition temperature of Arrhenius plots of mitochondrial ATPase (adenosine triphosphatase) increases as the unsaturated fatty acid content is lowered. 3. Cells require larger amounts of unsaturated fatty acids to grow on ethanol at lower temperatures. 4. Cells that stop growing owing to unsaturated fatty acid depletion at low temperatures are induced to grow further by raising the temperature and this results in a further depletion of unsaturated acids. This is due to a higher rate, but not a greater efficiency, of mitochondrial ATP synthesis. 5. Arrhenius plots of the passive permeability of mitochondria to protons between 4 and 37 degrees C are linear. The rate and the Arrhenius activation energy of proton entry increase greatly as the unsaturated fatty acid content is lowered. 6. Unsaturated fatty acid depletion has the same effects on the proton permeability of ole-1 petite mitochondria, indicating that the mitochondrially synthesized subunits of the ATPase are not involved in the enhanced rates of proton entry. 7. The adenylate energy charge of depleted ole-1 cells is greatly decreased by growth on ethanol medium. 8. The adenylate energy charge of isolated mitochondria is also lowered by unsaturated fatty acid depletion. 9. The results confirm that unsaturated fatty acid depletion uncouples oxidative phosphorylation in yeast both in vivo and in vitro, and is a consequence of changes in the lipid part of the membrane.  相似文献   

3.
Unsaturated fatty acid mutants of Saccharomyces cerevisiae   总被引:21,自引:12,他引:9  
Resnick, Michael A. (University of California, Berkeley), and Robert K. Mortimer. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. J. Bacteriol. 92:597-600. 1966.-The wild type of the yeast Saccharomyces cerevisiae does not require fatty acids or sterols for growth. Two types of lipid nutritional mutants have been induced in this organism. One of these classes of mutants requires an unsaturated fatty acid and is associated with a locus on chromosome VII. The other class of mutants needs either an unsaturated fatty acid or ergosterol for growth. Experiments involving identification and characterization of these mutants are presented.  相似文献   

4.
Saccharomyces cerevisiae GL7 cells require exogenous sterol and unsaturated fatty acid for growth. When grown in the presence of cholesterol or 7-dehydrocholesterol, the cells incorporated less saturated fatty acid into phospholipids than cells grown with ergosterol, stigmasterol, or beta-sitosterol as the sterol source. This lower saturated fatty acid content was most pronounced in phosphatidylethanolamine, slightly less so in phosphatidylcholine, and least evident in phosphatidylserine and phosphatidylinositol. Growing the cells with the various sterols did not affect the ratios of individual phospholipids. The ability of strain GL7 to use 7-dehydrocholesterol as the only sterol supplement for growth was dependent upon the nature of the unsaturated fatty acids added to the growth medium. In the presence of linoleic, linolenic, or a mixture of palmitoleic and oleic acids, excellent growth was observed with either ergosterol, cholesterol, or 7-dehydrocholesterol. However, when the medium was supplemented with either oleic or petroselenic acid, the cells grew more slowly (oleic) or much more poorly (petroselenic) with 7-dehydrocholesterol than with ergosterol. A specific relationship between sterol structure and membrane fatty acid composition in yeast cells is implied.  相似文献   

5.
1. The sterol, unsaturated fatty acid and cytochrome contents of cells of a delta-aminolaevulinate synthase mutant of Saccharomyces cerevisiae are manipulated by growing the organism in media containing defined supplements of delta-aminolaevulinate and other porphyrin intermediates. 2. If unsaturated fatty acids are added to the growth medium as Tween 80, sterol content and respiratory cytochromes alone are manipulated. 3. In the presence of delta-aminolaevulinate (10-50mg/1) cells exhibit moderate to high respiratory activity, but growth yields are low, indicating a loss of oxidative phosphorylation. This is associated with the depletion of membrane lipids, either unsaturated fatty acids and sterols together or sterols alone. 4. Sterol depletion leads to the loss of coupled mitochondrial oxidative phosphorylation in vitro. 5. The lesion in oxidative phosphorylation is associated with an increase in the passive permeability of sterol-depleted mitochondria to protons. 6. Arrhenius plots of mitochondrial permeability to protons indicate that the activation energy for proton entry increases as the sterol content of the membranes decreases. 7. Studies on a cytoplasmic petite mutant isolated from strain ole-3, which lacks a functional membrane-bound protein-translocating adenosine triphosphatase, indicate that proton permeability of the petite mitochondria varies as a function of sterol composition in the same way as that of ole-3 grande mitochondria. This indicates that sterols alone are probably directly responsible for the increased proton entry, owing to a reorganization of the lipid in the membrane. 8. Supplemented ole-3 cells with a normal lipid composition and normal or higher than normal respiratory activities have a growth efficiency only 65% of that of the wild-type, indicating that a further lesion in energy metabolism may be present.  相似文献   

6.
An analysis is given of the fatty acid composition of 18 yeast species, predominantly of the genus Saccharomyces; respiratory deficient mutant strains are included. The results are discussed from chemotaxonomical and physiological viewpoints, with special attention to unsaturated fatty acids and their relation to the petite mutation. The fatty acid composition of anaerobically grown Saccharomyces cerevisiae remains restricted, as far as unsaturated fatty acids are concerned, to those added to the medium and it may thus differ considerably from the composition after aerobic growth. Depending on the acids added, the cells may contain either palmitoleic or linoleic acids as the sole unsaturated fatty acid after anaerobic growth and as the predominant unsaturated fatty acid after aerobic growth. In contrast to all other known eukaryotes, Schizosaccharomyces japonicus seems to possess an anaerobic pathway for synthesis of unsaturated fatty acids.  相似文献   

7.
The polar lipids of Streptococcus pneumoniae wild type and aminopterin-resistant strains were analysed. The membrane contained only two acid phospholipids, phosphatidylglycerol and cardiolipin, and a large amount of two glycolipids, glucosyldiglyceride and galactosylglucosyldiglyceride. The unsaturated acyl chains ranged from 58 to 87% of total fatty acids, depending on the strain and on growth conditions. No relation could be established between aminopterin resistance and polar lipid or fatty acid compositions. However, in the presence of bacteriostatic concentrations of aminopterin, the wild type and the resistant mutant did not have the same behavior. The resistant strain maintained its fatty acid composition and a normal [32P]phosphate distribution among phospholipids while the wild type shifted to a higher content in unsaturated fatty acids and to a high relative cardiolipin labelling. Such a differencein [32P] distribution was not observed when bacteriostatic concentrations of chloramphenicol were used, or when growth was stopped after amino acid deprivation induced by high concentrations of isoleucine. The biochemical basis of the aminopterin resistant character of the amiA mutants are not yet well understood but the present study establishes that the mutation confers a certain insensitivity of the lipid metabolism to aminopterin.  相似文献   

8.
Fatty acid and sterol content and composition were determined for the dimorphic mold, Mucor genevensis, grown under a variety of experimental conditions. Fatty acids account for 6 to 9% of the dry weight of aerobically grown mycelium, and 70 to 80% of these are unsaturated. The organism contains γ-linolenic acid which is characteristic for Phycomycetes, and in sporangiospores this compound represents 40% of the total fatty acids. Of the sterols found in mycelium, 80% is ergosterol, and stigmasterol was positively identified as one of the minor components. In anaerobically grown yeastlike cells, sterol content is less than 10% of the level found in aerobically grown cells, and fatty acids amount to less than 2% of the dry weight. These fatty acids are predominantly short chain and less than 10% are unsaturated. Yeastlike cells obtained under aerobic conditions by growth in the presence of phenethyl alcohol have fatty acid and sterol compositions characteristic of aerobically grown mycelium. It is concluded that the dimorphology of the organism is not directly related to lipid composition.  相似文献   

9.
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.  相似文献   

10.
The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.  相似文献   

11.
The nature of the endogenous reserves of Saccharomyces cerevisiae was examined with respect to conditions of growth, specifically extremes of oxygen tension and carbon source. Cells were grown in batch culture at 30 C under aerobic conditions on a galactose or glucose carbon source and under anaerobic conditions on glucose. The greatest effect of growth conditions on the chemical composition of the cells was on their fatty acid and sterol content.Cells grown under both aerobic and anaerobic conditions mobilised concurrently protein, glycogen, trehalose and fatty acids during a period of 72 hours' starvation under aerobic conditions. The viability of both types of the aerobically grown cells declined to 75% during this period and was not influenced by the initial fatty acid and sterol content of the cells. Cells grown anaerobically showed a more rapid decline in viability which was only 17% after 72 hours' starvation. This loss of viability was not due to a lack of available endogenous reserves but was probably due to an impaired membrane function caused by a deficiency of sterols and unsaturated fatty acids.  相似文献   

12.
The wild-type Aspergillus niger (V35) does not require fatty acids for growth. Four unsaturated fatty acid auxotrophs designated as UFA1, UFA2, UFA3, and UFA4 have been produced from this organism by treating the conidia of the wild-type strain with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine, followed by isolation on media containing monounsaturated fatty acids and the nonionic detergent, Brij 58. Optimal growth of the mutants comparable with that of the wild type was achieved with medium supplemented with C16 or C18 unsaturated fatty acids containing at least one cis double bond at the delta 9 position. Some other fatty acids (18:1 delta 11 cis and 16:1 delta 9 trans) support growth to some extent. The mutants do not grow at all in the presence of saturated fatty acids. Fatty acid analyses of the mutant, UFA2, grown in the presence of different fatty acid supplements reveal that it may be defective in a desaturase system. Experiments with unlabeled and [1-14C]palmitoyl-CoA have shown that the microsomes of the mutant (UFA2) contain a partially defective delta 9-desaturase system.  相似文献   

13.
Constant levels of cellular unsaturated fatty acids were obtained by growing a fatty acid desaturase mutant of Saccharomyces cerevisiae in glucose limited chemostat cultures supplemented with various concentrations of Tween 80. An increase in the frequency of cytoplasmic respiratory incompetent mutants was observed in cultures growing at low cellular levels of unsaturated fatty acids. This effect has been shown to result from an increase in the rate of mutation as the cellular unsaturated fatty acid level is decreased. The majority of induced petite mutants are ?° (contain no mitochondrial DNA).  相似文献   

14.
Sterol methylation in Saccharomyces cerevisiae.   总被引:5,自引:2,他引:3       下载免费PDF全文
Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5.  相似文献   

15.
Saccharomyces cerevisiae was grown in batch culture over a wide range of oxygen concentrations, varying from the anaerobic condition to a maximal dissolved oxygen concentration of 3.5 muM. The development of cells was assayed by measuring amounts of the aerobic cytochromes aa(3), b, c, and c(1), the cellular content of unsaturated fatty acids and ergosterol, and the activity of respiratory enzyme complexes. The half-maximal levels of membrane-bound cytochromes aa(3), b, and c(1), were reached in cells grown in O(2) concentrations around 0.1 muM; this was similar to the oxygen concentration required for half-maximal levels of unsaturated fatty acid and sterol. However, the synthesis of ubiquinone and cytochrome c and the increase in fumarase activity were essentially linear functions of the dissolved oxygen concentration up to 3.5 muM oxygen. The synthesis of the succinate dehydrogenase, succinate cytochrome c reductase, and cytochrome c oxidase complexes showed different responses to changes in O(2) concentration in the growth medium. Cyanide-insensitive respiration and P(450) cytochrome content were maximal at 0.25 muM oxygen and declined in both more anaerobic and aerobic conditions. Cytochrome c peroxidase and catalase activities in cell-free homogenates were high in all but the most strictly anaerobic cells.  相似文献   

16.
Regulation by heme of sterol uptake in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The leaky heme mutants G204, G216, and G214 are shown to accumulate exogenous sterols. Unlike hem mutants which have complete blocks in the heme pathway, these strains do not require ergosterol, methionine, or unsaturated fatty acids for growth. The addition of aminolevulinic acid to the growth medium inhibited sterol uptake in G204 96% but had only a slight effect on sterol uptake by strains G214 and G216. Sterol uptake in all three strains was inhibited 83-94% when cells were grown in the presence of hematin. Sterol analysis of these strains grown in the presence and absence of either aminolevulinic acid or hematin revealed that saturation of the cell membrane with ergosterol was not responsible for the dramatic decrease in sterol uptake. These results suggest that sterol uptake by yeast cells is controlled by heme, and explain the non-viability of yeast strains that are heme competent and auxotrophic for sterols.  相似文献   

17.
In screening for resistance to tannic acid, mutants of Saccharomyces cerevisiae with an altered cell wall composition were recently isolated. Here we show that these mutants were all respiratory deficient. Cytoplasmic petite mutants isolated after ethidium bromide mutagenesis were resistant to tannic acid and had cell wall characteristics similar to the mutants isolated by screening for tannic acid resistance as shown by the lower sensitivity to zymolyase, a cell wall hydrolyzing enzyme, and by a changed sensitivity to calcofluor white, a molecule interfering with the cell wall assembly. Reintroducing active mitochondria to a tannic-acid-resistant mutant reduced the tannic acid resistance and zymolyase resistance to the wild-type level, showing that a mitochondrial mutation was responsible for the changes in cell wall composition and in tannic acid sensitivity.  相似文献   

18.
C alcott , P.H. O liver , J.D. D ickey , K. & C alcott K atherine , 1984. Cryosensitivity of Escherichia coli and the involvement of cyclopropane fatty acids. Journal of Applied Bacteriology 56 , 165–172.
Strains of Escherichia coli proficient and deficient in cylopropane fatty acid synthesis were compared for fatty acid content, cryosensitivity, presence of freeze-thaw-induced wall and membrane damage, resistance to detergent-stimulated lysis and tolerance to salt and detergents during growth. The mutant populations synthesized much less cyclopropane fatty acids and were more resistant than the wild type to freezing and thawing in saline only, exhibiting less viability loss and less wall and membrane damage. While the resistance of the mutants to NaCl was unaltered, their detergent resistance was decreased under both growth and non-growth conditions. Although these physiological changes were associated with a lower cyclopropane fatty acid content in the mutant strains, it is proposed that the responses were due to the altered membrane fluidity of the mutants due to changes in their unsaturated fatty acid content.  相似文献   

19.
The PAH1-encoded phosphatidate (PA) phosphatase in Saccharomyces cerevisiae is a pivotal enzyme that produces diacylglycerol for the synthesis of triacylglycerol (TAG) and simultaneously controls the level of PA used for phospholipid synthesis. Quantitative lipid analysis showed that the pah1Δ mutation caused a reduction in TAG mass and an elevation in the mass of phospholipids and free fatty acids, changes that were more pronounced in the stationary phase. The levels of unsaturated fatty acids in the pah1Δ mutant were unaltered, although the ratio of palmitoleic acid to oleic acid was increased with a similar change in the fatty acid composition of phospholipids. The pah1Δ mutant exhibited classic hallmarks of apoptosis in stationary phase and a marked reduction in the quantity of cytoplasmic lipid droplets. Cells lacking PA phosphatase were sensitive to exogenous fatty acids in the order of toxicity palmitoleic acid > oleic acid > palmitic acid. In contrast, the growth of wild type cells was not inhibited by fatty acid supplementation. In addition, wild type cells supplemented with palmitoleic acid exhibited an induction in PA phosphatase activity and an increase in TAG synthesis. Deletion of the DGK1-encoded diacylglycerol kinase, which counteracts PA phosphatase in controlling PA content, suppressed the defect in lipid droplet formation in the pah1Δ mutant. However, the sensitivity of the pah1Δ mutant to palmitoleic acid was not rescued by the dgk1Δ mutation. Overall, these findings indicate a key role of PA phosphatase in TAG synthesis for protection against fatty acid-induced toxicity.  相似文献   

20.
1. The ole-3 mutant of Saccharomyces cerevisiae has an early lesion in the pathway of porphyrin biosynthesis. 2. This results in the loss of all haem-containing enzymes, including the mitochondrial cytochromes, and prevents the synthesis of components whose formation requires haem-containing enzymes, including unsaturated fatty acids, ergosterol and methionine. 3. The pleiotropic effects of the primary lesion are reversed by growing mutant ole-3 aerobically in the presence of intermediates of the porphyrin-biosynthetic pathway, and the present work reports the degree of manipulation of lipid and respiratory-cytochrome composition. 4. Supplements of delta-aminolaevulinate in the range 0.5--500 mg/l result in a progressive increase in the cellular content of unsaturated fatty acids and respiratory cytochromes, cause the replacement of lanosterol and squalene by ergosterol, and an increase in total sterol content. 5. Haematoporphyrin and protoporphyrin IX have similar but less extensive effects on cellular composition, whereas haematin allows unsaturated fatty acid synthesis and some sterol synthesis, but has no effect on the formation of respiratory cytochromes. 6. These results suggest that growth of the organism in the presence of defined amounts of delta-aminolaevulinate will be useful in the investigation of the role of lipids and cytochromes in the function and assembly of mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号