首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Uptake of Branched-Chain Amino Acids by Streptococcus thermophilus   总被引:6,自引:2,他引:4       下载免费PDF全文
The transport of branched-chain amino acids in Streptococcus thermophilus was energy dependent. The metabolic inhibitors of glycolysis and ATPase enzymes were active, but the proton-conducting uncouplers were not. Transport was optimal at temperatures of between 30 and 45°C and at pH 7.0 for the three amino acids leucine, valine, and isoleucine; a second peak existed at pH 5.0 with valine and isoleucine. By competition and kinetics studies, the branched-chain amino acids were found to share at least a common transport system.  相似文献   

2.
Mutations in Escherichia coli genes cpxA and cpxB together cause a temperature-sensitive defect in isoleucine and valine syntheses that is related specifically to acetohydroxyacid synthase I. This enzyme catalyzes the first pair of homologous reactions required for the synthesis of these two amino acids. At both permissive and nonpermissive temperatures, mutant cells containing ilvB (the structural gene for acetohydroxyacid synthase I) cloned in a derivative of plasmid pBR322 synthesized comparable amounts of ilvB mRNA and contained several times the enzyme activity normally required to sustain exponential growth, yet these cells remained temperature sensitive for growth in the absence of isoleucine and valine. These observations suggest that the primary effect of the cpx mutations is to block enzyme function in vivo. The enzyme was unstable in mutant cells at growth temperatures above 37 degrees C, but this instability appeared to be a secondary effect on the cpx mutations.  相似文献   

3.
Penicillium cyclopium, grown in stationary culture, produces a type I lipase specific for triacylglycerols while, in shaken culture, it produces a type II lipase only active on partial acylglycerols. Lipase II has been purified by ammonium sulfate precipitation and chromatographies on Sephadex G-75 and DEAE-Sephadex. The enzyme exists in several glycosylated forms of 40-43 kDa, which can be converted to a single protein of 37 kDa by enzymatic deglycosylation. Activity of lipase II is maximal at pH 7.0 and 40 degrees C. The enzyme is stable from pH 4.5 to 7.0. Activity is rapidly lost at temperatures above 50 degrees C. The enzyme specifically hydrolyzes monoacylglycerols and diacylglycerols, especially of medium chain fatty acids. The sequence of the 20 first amino acid residues is similar to the N-terminal region of P. camembertii lipase and partially similar to lipases from Humicola lanuginosa and Aspergillus oryzae, but is different from Penicillium cyclopium lipase I. However, it can be observed that residues of valine and serine at positions 2 and 5 in Penicillium cyclopium lipase II are conserved in Penicillium expansum lipase, of which 16 out of the 20 first amino acid residues are similar to Penicillium cyclopium lipase I.  相似文献   

4.
The effect of temperature on the kinetic parameters of phosphoenolpyruvate carboxylase purified from Crassula argentea was such that both the Vmax and Km(MgPEP) values tended upward over the range from 11 to 35 degrees C. The increased rate at low temperatures due to the low Km is at least partially offset by the increased Vmax at higher temperatures, potentially leading to a broad plateau of enzyme activity and a relatively small effect of temperature on the enzyme. The cooperativity was negative at 11 degrees C, but above 15 degrees C it became positive. The presence of 5 mM glucose-6-phosphate has relatively little effect on Vmax but it clearly reduces Km and overcomes any effect of temperature on this parameter in the range studied. Positive cooperativity is observed only at temperatures above 25 degrees C. The size of the native enzyme, as determined by dynamic light scattering, was strongly toward the tetrameric form. At a temperature of 40 degrees C and above, a considerable oligomerization takes place. No loss of activity can be observed in this range of temperature. In the presence of either glucose-6-phosphate or magnesium phosphoenolpyruvate, at temperatures under 25 degrees C, the equilibrium is displaced toward higher levels of aggregation. Maximal accumulation of lead malate occurred at 10 to 12 degrees C in vivo with reduction to about 25% at 35 degrees C. Glucose-6-phosphate followed a similar curve in response to temperature, but the overall difference was about 50%. The sum of phosphoenolpyruvate plus pyruvate is level at night temperatures below 25 degrees C, doubling at 35 degrees C. Calculated concentrations of malate, glucose-6-phosphate, and phosphoenolpyruvate plus pyruvate indicate that the concentrations present are equal to or greater than Ki, Ka, and Km values for these metabolites, respectively.  相似文献   

5.
C Gaudin  B Marty  M Ragot  J C Sari  J P Belaich 《Biochimie》1980,62(10):741-746
The behaviour of the Leucine isoleucine Valine binding protein of Escherichia coli as a function of temperature has been examined. Substrate binding measurements showed a temperature dependence of the leucine-isoleucine-valine binding protein leucine complex formation constants. The protein-substrate complex was completely dissociated beyond 70 degrees C. In the range 5-65 degrees C the protein remained active but Van't Hoff's plots indicated changes of the reaction thermodynamic parameters. Large negative delta Cp values (--2.25 kJ mole-1 K-1 between 5 and 40 degrees C and--9.40 above 40 degrees C) indicate important substrate induced modifications of the protein conformation. Scanning calorimetry of the leucine isoleucine valine binding protein before and after addition of leucine was also performed. Two thermal events were recorded when the protein was substratefree and only one, at a higher temperature and more important, when the substrate was added. The results of these two approaches were in agreement in that both methods suggested a binding dependent conformational change of the protein which resulted in a greater stability of its structure.  相似文献   

6.
Pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase, EC 2. 7. 1. 40) from bovine adrenal cortex was purified 243 fold. The whole purification procedure included ammonium sulphate fractionation, heat treatment, Sephadex HW-55 chromatography and phosphocellulose chromatography. The specific activity of the preparation is 15.6 U/mg at 30 degrees C, the yield--36%. Pyruvate kinase showed only one protein band as judged by sodium dodecyl sulphate acrylamide gel electrophoresis. The enzyme displayed a hyperbolic saturation curve with respect to P-enolpyruvate. The apparent Km for this substrate was 0.55 X 10(-4) M, pH optimum--6.8-7.0. K+ concentrations above 0.1 M inhibit the enzyme.  相似文献   

7.
Y Suzuki  Y Terai    S Abe 《Applied microbiology》1978,35(2):258-263
A riboflavin synthetase was purified 51-fold from a thermophilic organism, Bacillus stearothermophilus ATCC 8005, that grew at 40 to 72 degrees C. Some of the properties of the enzyme are: (i) its temperature optimum was 95 degrees C, and the activity was negligible below 40 degrees C; (ii) the Arrhenius plot of the initial reaction rates was concave upward, with a break at 65 degrees C, and the apparent activation energies below and above 65 degrees C were 4.2 X 10(4) and 6.7 X 10(4) J/mol, respectively; (iii) the enzyme was fairly stable up to 60 degrees C without 6,7-dimethyl-8-ribityllumazine; this substance protected the enzyme from inactivation above 60 to 97 degrees C; (iv) the pH range for stability was 6.0 to 10.0 at 26 degrees C and 6.3 to 7.6 at 55 degrees C; (v) the enzyme was highly resistant at 26 degrees C to denaturation in 8 M urea, but the tolerance was extremely low at 55 degrees C; (vi) its molecular weight was estimated at 45,000; (vii) the Km for 6,7-dimethyl-8-ribityllumazine was 23 micrometer at 55 degrees C and 29 micrometer at 75 degrees C; (viii) its pH optimum was 6.7 to 7.2; (ix) 6-methyl-7-hydroxy-8-ribityllumazine was a competitive inhibitor (Ki = 0.18 micrometer); (x) the activity was sensitive to heavy-metal ions and thiol reagents; (xi) the enzyme did not require cofactor or a carbon donor; and (xii) the molar ratio of 6,7-dimethyl-8-ribityllumazine consumption to riboflavin formation was 2 throughout the entire reaction. Properties i through vi distinguish this enzyme from riboflavin synthetases purified by other investigators from mesophilic organisms, Ashbya gossypii, Eremothecium ashbyii, Escherichia coli, yeast, and spinach.  相似文献   

8.
A putative endo-beta-1,4-D-galactanase gene of Thermotoga maritima was cloned and overexpressed in Escherichia coli. The recombinant enzyme hydrolyzed pectic galactans and produced D-galactose, beta-1,4-D-galactobiose, beta-1,4-D-galactotriose, and beta-1,4-D-galactotetraose. The enzyme displayed optimum activity at 90 degrees C and pH 7.0. It was slowly inactivated above pH 8.0 and below pH 5.0 and stable at temperatures up to 80 degrees C.  相似文献   

9.
A novel bacterial protease specifically hydrolyzing actin with the formation of a stable fragment with Mr of 36 kDa was obtained. This protease was shown to be synthesized at the stationary phase of bacterial culture growth. The actin hydrolysis by bacterial protease was inhibited by o-phenanthroline, EDTA and p-chloromercuribenzoate but not by N-ethyl-maleimide, phenylmethylsulfonylfluoride, Leu-peptin, pepstatin and other serine proteinase inhibitors. The protease was stable within the pH range of 4.5-8.5 and had an activity optimum at pH 7.0-8.0. The protease activity was maintained for 40 min at 45 degrees C and for 30 min at 50 degrees C; at 65 degrees C the enzyme was fully inactivated by 5 min heating. The protease preparations causing quantitative conversion of actin into a 36 kDa fragment did not hydrolyze casein, albumin, ovalbumin, lysozyme, DNAase I, RNAase, myosin, alpha-actinin, tropomyosin and troponin. It was assumed that the protease under consideration is a neutral metalloprotease specifically hydrolyzing actin.  相似文献   

10.
A lysine aminopeptidase was purified from the yeast Kluyveromyces marxianus. This enzyme was purified 100-fold from a soluble extract obtained at 100,000g. The purification procedure consisted in fractionated precipitation with ammonium sulfate and five chromatography steps. The native enzyme had a molecular mass of 46 kDa assessed through gel filtration. This aminopeptidase depicted an optimal pH of 7.0 and was stable at a pH range of 4-8, its optimal temperature was 45 degrees C and the enzyme became unstable at temperatures above 55 degrees C. The isoelectric point of the purified enzyme was 4.4. Michaelis constant and Vmax for L-lysine-p-nitroanilide were 0.33 mM and 2.2 mM min(-1) per milligram of protein, respectively. The enzyme was strongly inhibited by bestatin, o-phenanthroline and, to a lesser extent, by EDTA, suggesting that this enzyme is a metalloprotease. Our results suggest that the lysine aminopeptidase from Kluyveromyces marxianus might be of biotechnological relevance.  相似文献   

11.
beta-Galactosidase from Bacillus stearothermophilus.   总被引:6,自引:0,他引:6  
Several strains of thermophilic aerobic spore-forming bacilli synthesize beta-galactosidase (EC 3.2.1.23) constitutively. The constitutivity is apparently not the result of a temperature-sensitive repressor. The beta-galactosidase from one strain, investigated in cell-free extracts, has a pH optimum between 6.0 and 6.4 and a very sharp pH dependence on the acid side of its optimum. The optimum temperature for this enzyme is 65 degrees C and the Arrhenius activation energy is about 24 kcal/mol below 47 degrees C and 16 kcal/mol above that temperature. At 55 degrees C the Km is 0.11 M for lactose and 9.8 X 10(-3) M for 9-nitrophenyl-beta-D-galactopyranoside. The enzyme is strongly product-inhibited by galactose (Ki equals 2.5 X 10(-3) M). It is relatively stable at 50 degrees C, losing only half of its activity after 20 days at this temperature. At 60 degrees C more than 60% of the activity is lost in 10 min. However, the enzyme is protected somewhat against thermal inactivation by protein, and in the presence of 4 mg/ml of bovine serum albumin the enzyme is only 18% inactivated in 10 min at 60 degrees C. Its molecular weight, estimated by disc gel electrophoresis, is 215 000.  相似文献   

12.
Dextranase produced by Lipomyces starkeyi was purified 43-fold, by carboxymethyl-Sepharose chromatography followed by agarose gel-filtration chromatography. The purified enzyme showed four bands by SDS/polyacrylamide gel electrophoresis with estimated mass 74 kDa, 71 kDa, 68 kDa and 65 kDa. This preparation exhibited multiple isoelectric points between 5.6 and 6.1. All the isoelectric forms were active and catalytically similar. The dextranase contained a carbohydrate moiety (8%). The physical properties of the enzyme were pH and temperature optima of 5.0 and 55 degrees C, respectively. This dextranase was stable between pH 2.5 and 7.0 at temperatures below 40 degrees C. Lipomyces dextranase was a typical endodextranase with the final product of dextran hydrolysis being isomalto-oligosaccharides from glucose to isomaltotetrose.  相似文献   

13.
Extracellular acid and alkaline proteases from Candida olea   总被引:3,自引:0,他引:3  
Candida olea 148 secreted a single acid protease when cultured at acidic pH. In unbuffered medium, the culture pH eventually became alkaline and a single alkaline protease was produced. This was the only proteolytic enzyme produced when the organism was grown in buffered medium at alkaline pH. Both proteolytic enzymes were purified to homogeneity (as assessed by SDS-PAGE). The Mr of the acid protease was 30900, the isoelectric point 4.5; optimum activity against haemoglobin was at 42 degrees C and pH 3.3. This enzyme was inactivated at temperatures above 46 degrees C and was inhibited by either pepstatin and diazoacetyl-norleucine methyl ester but was insensitive to inhibition by either 1,2-epoxy-3-(p-nitrophenoxy)-propane or compounds known to inhibit serine, thiol or metallo proteases. The acid protease contained 11% carbohydrate. The alkaline protease had an Mr of 23400 and isoelectric point of 5.4. The activity of this enzyme using azocoll as substrate above 42 degrees C and was inhibited by phenylmethyl-sulphonyl fluoride and irreversible inactivated by EDTA. The enzyme was also partially inhibited by DTT but was insensitive to either pepstatin or p-chloromercuribenzoic acid.  相似文献   

14.
A riboflavin synthetase was purified 51-fold from a thermophilic organism, Bacillus stearothermophilus ATCC 8005, that grew at 40 to 72 degrees C. Some of the properties of the enzyme are: (i) its temperature optimum was 95 degrees C, and the activity was negligible below 40 degrees C; (ii) the Arrhenius plot of the initial reaction rates was concave upward, with a break at 65 degrees C, and the apparent activation energies below and above 65 degrees C were 4.2 X 10(4) and 6.7 X 10(4) J/mol, respectively; (iii) the enzyme was fairly stable up to 60 degrees C without 6,7-dimethyl-8-ribityllumazine; this substance protected the enzyme from inactivation above 60 to 97 degrees C; (iv) the pH range for stability was 6.0 to 10.0 at 26 degrees C and 6.3 to 7.6 at 55 degrees C; (v) the enzyme was highly resistant at 26 degrees C to denaturation in 8 M urea, but the tolerance was extremely low at 55 degrees C; (vi) its molecular weight was estimated at 45,000; (vii) the Km for 6,7-dimethyl-8-ribityllumazine was 23 micrometer at 55 degrees C and 29 micrometer at 75 degrees C; (viii) its pH optimum was 6.7 to 7.2; (ix) 6-methyl-7-hydroxy-8-ribityllumazine was a competitive inhibitor (Ki = 0.18 micrometer); (x) the activity was sensitive to heavy-metal ions and thiol reagents; (xi) the enzyme did not require cofactor or a carbon donor; and (xii) the molar ratio of 6,7-dimethyl-8-ribityllumazine consumption to riboflavin formation was 2 throughout the entire reaction. Properties i through vi distinguish this enzyme from riboflavin synthetases purified by other investigators from mesophilic organisms, Ashbya gossypii, Eremothecium ashbyii, Escherichia coli, yeast, and spinach.  相似文献   

15.
Valyl-tRNA synthetase from Mycobacterium smegmatis has been purified over 1200-fold by conventional techniques as well as affinity chromatography on valyl-aminohexyl Sepharose columns. The purified preparation is homogeneous by electrophoretic and immunologic criteria. The enzyme is a tetramer of approximate molecular weight of 120,000, composed of a single type of subunit. The synthetase exhibited maximal activity between 35--40 degrees C and pH 6.8--7.0. The pure enzyme though stable for several months below 0 degrees C, loses activity completely at 70 degrees C, for 1 min. The enzyme showed normal Michaelis-Menten kinetic behaviour in the total aminoacylation reaction with Km values of 1.25 microM, 0.1 mM and 1.0 microM for valine, ATP and tRNA, respectively, but the kinetic response deviated from the above pattern in the partial (activation) reaction. Based on these findings, the existence of the enzyme in two molecular forms, modulated by substrate concentration has been suggested; of these, only one may be active in the total reaction, while both forms may function in the phophosphate exchange reaction.  相似文献   

16.
Heparinase (EC 4.2.2.7) isolated from Flavobacterium heparinum was purified to homogeneity by a combination of hydroxylapatite chromatography, repeated gel filtration chromatography, and chromatofocusing. Homogeneity was established by the presence of a single band on both sodium dodecyl sulfate and acid-urea gel electrophoretic systems. Amino acid analysis shows that the enzyme contains relatively high amounts of lysine residues (9%) consistent with its cationic nature (pI 8.5) but contains only 4 cysteine residues/polypeptide. The molecular weight of heparinase was estimated to be 42,900 +/- 1,000 daltons by gel filtration and 42,700 +/- 1,200 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is very specific, acting only on heparin and heparan monosulfate out of 12 similar polysaccharide substrates tested. It has an activity maximum at pH 6.5 and 0.1 M NaCl and a stability maximum at pH 7.0 and 0.15 M NaCl. The Arrhenius activation energy was found to be 6.3 kcal/mol. However, the enzyme is very sensitive to thermal denaturation and loses activity very rapidly at temperatures over 40 degrees C. Kinetic studies of the heparinase reaction at 37 degrees C gave a Km of 8.04 X 10(-6) M and a Vm of 9.85 X 10(-5) M/min at a protein concentration of 0.5 microgram/ml. By adapting batch procedures of hydroxylapatite and QAE (quaternary aminoethyl)-Sephadex chromatography, gram quantities of heparinase that is nearly free of catalytic enzyme contaminants can be purified in 4-5 h.  相似文献   

17.
The synthesis of the three types of acetolactate synthase (EC 4.1.3.18) which are responsible for the biosynthesis os isoleucine and valine, was observed in Aerobacter aerogenes I-12, an isoleucine-requiring mutant, when grown on the four kinds of media. When the cells were grown on isoleucine-rich medium, acetolactate synthase sensitive to feedback inhibition and having an optimum pH at 8.0 was formed. By increasing the amount of potassium phosphate in the medium, the catabolite repression of the enzyme having an optimum pH at 6.0 and which is insensitive to feedback inhibition, was released. In contrast, acetolactate synthase having an optimum pH at 8.0 and insensitive to feedback inhibition was formd when isoleucine was limited, irrespective of phosphate concentrations. Two insensitive enzymes were not regulated by isoleucine, leucine and valine, although sensitive pH 8.0 enzyme was repressed by them. Thus, it may be assumed that the synthesis of insensitive pH 8.0 enzyme were repressed by limiting the amount of isoleucine is still open.  相似文献   

18.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 micrometers in diameter. The new isolate grew at temperatures between 60 and 95 degrees C (optimum, 85 degrees C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120 degrees C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100 degrees C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110 degrees C. The enzyme formed mainly alpha-cyclodextrin with small amounts of beta- and gamma-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

19.
Intracellular thermostable amylases from a thermophilic Baccilus sp. AK-2 have been isolated and purified. The crude enzyme, having pH optimum at 6.5. and temperature optimum at 68 degrees C was purified by DEAE-cellulose column chromatography. Three separable enzyme fractions having starch hydrolyzing property were eluted by lowering the pH from 8.5 to 7.0. Electrophoretic mobility of these fractions showed a single band. Calcium ion up to a concentration of 20 mM had an activating effect on the three fractions. The optimum temperature for the three fractions (FI, FII and FIII) was 65 degrees C and the pH optimum for each was 6.0, 6.5 and 6.0, respectively. The -SH group in the amylase molecule was essential for enzyme activity. Except for Ca2+, Mg2+, Sr2+ and Mn2+ all other metal ions studied inhibited both alpha and beta-amylase activities. EDTA showed dose dependent non-competitive inhibition. Product formation studies proved FI and FIII to be of the alpha-amylase type and FII of the beta-amylase type. The Km for the substrate (starch) in the presence or absence of EDTA was 0.8 X 10(-3) and 1.13 X 10(-3) g/ml for alpha-amylase and beta-amylase, respectively.  相似文献   

20.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号