首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A DNA sequence-dependent nucleosome structural and dynamic polymorphism was recently uncovered through topoisomerase I relaxation of mononucleosomes on two homologous approximately 350-370 bp DNA minicircle series, one originating from pBR322, the other from the 5S nucleosome positioning sequence. Whereas both pBR and 5S nucleosomes had access to the closed, negatively crossed conformation, only the pBR nucleosome had access to the positively crossed conformation. Simulation suggested this discrepancy was the result of a reorientation of entry/exit DNAs, itself proposed to be the consequence of specific DNA untwistings occurring in pBR nucleosome where H2B N-terminal tails pass between the two gyres. The present work investigates the behavior of the same two nucleosomes after binding of linker histone H5, its globular domain, GH5, and engineered H5 C-tail deletion mutants. Nucleosome access to the open uncrossed conformation was suppressed and, more surprisingly, the ability of 5S nucleosome to positively cross was largely restored. This, together with the paradoxical observation of a less extensive crossing in the negative conformation with GH5 than without, favored an asymmetrical location of the globular domain in interaction with the central gyre and only entry (or exit) DNA, and raised the possibility of the domain physical rotation as a mechanism assisting nucleosome fluctuation from one conformation to the other. Moreover, both negative and positive conformations showed a high degree of loop conformational flexibility in the presence of the full-length H5 C-tail, which the simulation suggested to reflect the unique feature of the resulting stem to bring entry/exit DNAs in contact and parallel. The results point to the stem being a fundamental structural motif directing chromatin higher order folding, as well as a major player in its dynamics.  相似文献   

2.
The thermal flexibility of DNA minicircles reconstituted with single nucleosomes was measured relative to the naked minicircles. The measurement used a new method based on the electrophoretic properties of these molecules, whose mobility strongly depended on the DNA writhe, either of the whole minicircle, when naked, or of the extranucleosomal loop, when reconstituted. The experiment was as follows. The DNA length was first increased by one base-pair (bp), and the correlative shift in mobility resulting from the altered DNA writhe was recorded. Second, the gel temperature was increased so that the former mobility was restored. Under these conditions, the untwisting of the thermally flexible DNA due to the temperature shift exactly compensates for the increase in the DNA mean twist number resulting from the one bp addition. The relative thermal flexibility was then calculated as the ratio between the increases in temperature measured for the naked and the reconstituted DNAs, respectively. The figure, 0.69 (+/- 0.07), was used to derive the length of DNA in interaction with the histones, 109 (+/- 25) bp. Such length was in good agreement with the mean value of 115 bp we have previously obtained from the distribution of the angles between DNAs at the entrance and exit of similar nucleosomes measured from high resolution electron microscopy. This consistency further reinforces our previous conclusion that minicircle-reconstituted nucleosomes, with 1.3(109/83) to 1.4(115/83) turns of superhelical DNA, show no crossing of entering and exiting DNAs when the loop is in its most probable configuration, and therefore, that these nucleosomes behave topologically as "single-turn" particles. The present data are also within the range of values, 50 to 100 bp of thermally rigid DNA per nucleosome, obtained by others for yeast plasmid chromatin, suggesting that the "single-turn" particle notion may be extended to this particular case of naturally-occurring H1-free chromatin. However, these data are quite different from the 230 bp figure derived from thermal measurements of reconstituted H1-free minichromosomes. It is proposed that nucleosome interactions occurring in this chromatin, but not in yeast chromatin, may be partly responsible for the discrepancy.  相似文献   

3.
We have recently described the relaxation of mononucleosomes on an homologous series of 351-366 bp DNA minicircles, as a tool to study nucleosome structure and dynamics in vitro. Nucleosomes were found to have a tail-regulated access to three distinct DNA conformations, depending on the crossing between the entering and exiting DNAs, and its polarity. This approach was now used to explore tetrasome chiral transition, and the influence of the histone tails. The data confirmed the existence of two states, with linking number differences DeltaLk(t)=-0.74(+/-0.01) and +0.51(+/-0.06). As expected, the particle free energy is higher in the right-handed state (DeltaG(t)=1.9(+/-0.I) kT), but it decreased (to 1.3(+/-0.1) kT) upon histone acetylation and the addition of phosphate, a potent tail destabilizer. Removal of the tails with trypsin further decreased DeltaG(t) (to 0.6 kT), and also induced a loss of supercoiling in both states, to DeltaLk(t)=-0.64(+/-0.03) and +0. 35(+/-0.05). The loop end-conditions, and hence the parameters of the DNA superhelix, were then calculated for both states using the explicit solutions to the equations of the mechanical equilibrium in the theory of elastic rod model for DNA. Whereas the pitch of the DNA superhelix may be approximately equal and opposite in the two conformations, its radius (r) was 20% larger in the right-handed conformation, confirming previous observations by electron microscopy of a tetrasome lateral opening in that conformation. The above supercoiling losses were found to reflect a further 3 % increase in r (to 23 %) upon removal of the tails in the right-handed conformation, and a 14 % increase in the left-handed conformation. The use of composite tetramers with one histone tail intact and the other removed showed these effects to be essentially due to the H3 tails. Altogether, these results show that the H3 tails oppose the tetrasome opening which is expected to be required to relieve the clash between the entering and exiting DNAs in the course of the transition, but which also appears to be intrinsic to the protein reorientation mechanism. We propose that the block against opening results from the H3 tails intercalating into the small groove of the double helix at +/-10 bp from the dyad, and acting as wedges against local DNA straightening. The tails (especially H3) may therefore regulate tetrasome chiral transition in vivo.  相似文献   

4.
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.  相似文献   

5.
6.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

7.
The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on 'average' sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease kinetics shows enhanced accessibility of acetylated nucleosomes formed both on telomeric and 'average' sequence DNAs. These results suggest a more complex role for histone acetylation than the decrease of electrostatic interactions between DNA and histones.  相似文献   

8.
Inverted repeats of pBR322 and ColE 1 DNAs have been analyzed for the presence of cruciform structures upon formation of nucleosomes, using S1, P1 and restriction enzyme analysis. In both cases the fraction of molecules showing nuclease-sensitive sites is unaffected by the DNA relaxation, owing to the formation of nucleosomes. A kinetic mechanism, based on the freezing of cruciform structures on the nucleosome surface or nearby, is proposed. This hypothesis is supported by a preferential location of nucleosomes at the DNA sequences containing the nuclease-sensitive sites, as indicated by restriction enzyme analysis and electron microscopy visualization after psoralen cross-linking.  相似文献   

9.
The nucleosome remodeling activity of ISW1a was dependent on whether ISW1a was bound to one or both extranucleosomal DNAs. ISW1a preferentially bound nucleosomes with an optimal length of approximately 33 to 35 bp of extranucleosomal DNA at both the entry and exit sites over nucleosomes with extranucleosomal DNA at only one entry or exit site. Nucleosomes with extranucleosomal DNA at one of the entry/exit sites were readily remodeled by ISW1a and stimulated the ATPase activity of ISW1a, while conversely, nucleosomes with extranucleosomal DNA at both entry/exit sites were unable either to stimulate the ATPase activity of ISW1a or to be mobilized. DNA footprinting revealed that a major conformational difference between the nucleosomes was the lack of ISW1a binding to nucleosomal DNA two helical turns from the dyad axis in nucleosomes with extranucleosomal DNA at both entry/exit sites. The Ioc3 subunit of ISW1a was found to be the predominant subunit associated with extranucleosomal DNA when ISW1a is bound either to one or to both extranucleosomal DNAs. These two conformations of the ISW1a-nucleosome complex are suggested to be the molecular basis for the nucleosome spacing activity of ISW1a on nucleosomal arrays. ISW1b, the other isoform of ISW1, does not have the same dependency for extranucleosomal DNA as ISW1a and, likewise, is not able to space nucleosomes.  相似文献   

10.
The chromatin structure and DNA accessibility to proteins depend on the structure of linker DNA entering and exiting the nucleosome. Since DNA is a negatively charged polymer, the conformation of linker DNA, in turn, depends on the ionic microenvironment. In the present work, the effect of Na+ and K+ ions on the structure of mono nucleosome linker DNA was studiedby fluorescence microscopy of single complexes. It was revealed that nucleosomes adopt one of two conformational states, whose occupancy is significantly changed after the substitution of K+ ions by Na+. These changes are likely caused by different interaction of Na+ and K+ with DNA in the regions of DNA entry and exit of the nucleosome. Cation-dependent changes in the conformation of linker DNA may affect topological barriers in the nucleosome, structure of polynucleosome chromatin, and interactions with different protein factors.  相似文献   

11.
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3–4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.  相似文献   

12.
A functional role for nucleosomes in the repression of a yeast promoter.   总被引:29,自引:11,他引:18       下载免费PDF全文
C Straka  W Hrz 《The EMBO journal》1991,10(2):361-368
Induction of the PHO5 gene in S. cerevisiae was previously shown to be accompanied by the removal of four positioned nucleosomes from the promoter. In order to assess the role of nucleosomes in the cascade of gene activation, DNA corresponding to one of these nucleosomes was excised. In its place two foreign DNA segments of the same length were inserted: a fragment from the African green monkey alpha-satellite DNA which is known to associate with histones in a highly specific fashion to give a uniquely positioned nucleosome or, alternatively, a fragment derived from pBR322 DNA. The promoter constructs were fused to the lacZ gene on centromere plasmids and transformed into yeast cells. The satellite fragment formed a nucleosome which persisted under inducing conditions. At the same time the inducibility of the PHO5 promoter was virtually abolished. When various subfragments containing between 35 and 100 bp of the satellite segment were tested, they were all found to decrease the inducibility of the promoter, full repression required the full length molecule, however. In contrast, the pBR fragment made the promoter weakly constitutive, and induction proceeded to levels even higher than with a promoter lacking an insert. Analysis of the chromatin structure reveals a nucleosome on the pBR segment at noninducing conditions which is removed upon induction. It is concluded that the quality of the histone-DNA interactions at the promoter makes an intrinsic contribution to the regulation of the gene.  相似文献   

13.
Widlund HR  Vitolo JM  Thiriet C  Hayes JJ 《Biochemistry》2000,39(13):3835-3841
Modulation of nucleosome stability in chromatin plays an important role in eukaryotic gene expression. The core histone N-terminal tail domains are believed to modulate the stability of wrapping nucleosomal DNA and the stability of the chromatin filament. We analyzed the contribution of the tail domains to the stability of nucleosomes containing selected DNA sequences that are intrinsically straight, curved, flexible, or inflexible. We find that the presence of the histone tail domains stabilizes nucleosomes containing DNA sequences that are intrinsically straight or curved. However, the tails do not significantly contribute to the free energy of nucleosome formation with flexible DNA. Interestingly, hyperacetylation of the core histone tail domains does not recapitulate the effect of tail removal by limited proteolysis with regard to nucleosome stability. We find that acetylation of the tails has the same minor effect on nucleosome stability for all the selected DNA sequences. A comparison of histone partitioning between long donor chromatin, acceptor DNA, and free histones in solution shows that the core histone tails mediate internucleosomal interactions within an H1-depleted chromatin fiber amounting to an average free energy of about 1 kcal/mol. Thus, such interactions would be significant with regard to the free energies of sequence-dependent nucleosome positioning. Last, we analyzed the contribution of the H2A/H2B dimers to nucleosome stability. We find that the intact nucleosome is stabilized by 900 cal/mol by the presence of the dimers regardless of sequence. The biological implications of these observations are discussed.  相似文献   

14.
Nucleosome-like structures have been efficiently assembled in vitro by interaction of cauliflower histones, pBR322 DNA and cauliflower DNA topoisomerase, as assayed by supercoiling of relaxed circular DNA and by digestion with micrococcal nuclease. The optimum ionic strength for supercoiling was 150 mM KCl and the optimum weight ratio of histone to DNA was approximately 1.0. Four histones, H2A, H2B, H3 and H4, were necessary for the optimum assembling conditions, and the nucleosomes assembled protected DNA fragments of approximately 150 bp in length. It was found that cauliflower DNA topoisomerase acts not only as a DNA-relaxing enzyme but also as a chaperon factor for nucleosome assembly.  相似文献   

15.
Recombinant (r)HMfB (archaealhistone B fromMethanothermusfervidus) formed complexes with increasing stability with DNA molecules increasing in length from 52 to 100 bp, but not with a 39 bp molecule. By using125I-labeled rHMfB-YY (an rHMfB variant with I31Y and M35Y replacements) and32P-labeled 100 bp DNA, these complexes, designated archaeal nucleosomes, have been shown to contain an archaeal histone tetramer. Consistent with DNA bending and wrapping, addition of DNA ligase to archaeal nucleosomes assembled with 88 and 128 bp DNAs resulted in covalently-closed monomeric circular DNAs which, following histone removal, were positively supercoiled based on their electrophoretic mobilities in the presence of ethidium bromide before and after relaxation by calf thymus topoisomerase I. Ligase addition to mixtures of rHMfB with 53 or 30 bp DNA molecules also resulted in circular DNAs but these were circular dimers and trimers. These short DNA molecules apparently had to be ligated into longer linear multimers for assembly into archaeal nucleosomes and ligation into circles. rHMfB assembled into archaeal nucleosomes at lower histone to DNA ratios with the supercoiled, circular ligation product than with the original 88 bp linear version of this molecule. Archaeal histones are most similar to the globular histone fold region of eukaryal histone H4, and the results reported are consistent with archaeal nucleosomes resembling the structure formed by eukaryal histone (H3+H4)2tetramers.  相似文献   

16.
The roles of histone tails as substrates for reversible chemical modifications and dynamic cognate surfaces for the binding of regulatory proteins are well established. Despite these crucial roles, experimentally derived knowledge of the structure and possible binding sites of histone tails in chromatin is limited. In this study, we utilized molecular dynamics of isolated histone H3 N-terminal peptides to investigate its structure as a function of post-translational modifications that are known to be associated with defined chromatin states. We observed a structural preference for α-helices in isoforms associated with an inactive chromatin state, while isoforms associated with active chromatin states lacked α-helical content. The physicochemical effect of the post-translational modifications was highlighted by the interaction of arginine side-chains with the phosphorylated serine residues in the inactive isoform. We also showed that the isoforms exhibit different tail lengths, and, using molecular docking of the first 15 N-terminal residues of an H3 isoform, identified potential binding sites between the superhelical gyres on the octamer surface, close to the site of DNA entry/exit in the nucleosome. We discuss the possible functional role of the binding of the H3 tail within the nucleosome on both nucleosome and chromatin structure and stability.  相似文献   

17.
We have found that histone H5 (or H1) induces physiological nucleosome spacings and extensive ordering on some plasmid constructions, but not on others, in a fully defined in vitro system. Plasmid pBR327 containing DNA insertions with lengths close to 300 base-pairs permitted histone H5 to induce a remarkable degree of nucleosome alignment. Seventeen multiples of a unit 210(+/- 4) base-pair repeat, covering the entire plasmid, were detected. Plasmid pBR327, not containing a DNA insert, permitted continuous alignment of only a few nucleosomes. These observations suggest that a necessary requirement in this system for histone H5 (or H1)-induced nucleosome alignment on small (less than 4 kb; 1 kb = 10(3) bases or base-pairs) circular plasmids may be that the total DNA length must be close to an integer multiple of the nucleosome repeat length generated, a type of boundary effect. Consistent with this hypothesis, five deletion constructs of pBR327 (not containing inserts), that spanned 64% of the plasmid, and possessed DNA lengths close to integer multiples of 210 base-pairs, permitted nucleosome alignment by histone H5. We have also found that plasmid length adjustment is not a sufficient condition for nucleosome alignment. For example, plasmids pBR322 and pUC18 did not permit nucleosome alignment when adjusted to near-integer multiples of 210 base-pairs. Also, for pBR327 that contained a length-adjusted deletion in one particular region, appreciable nucleosome alignment no longer occurred. These data suggest that a contiguous approximately 800 base-pair region of pBR327, interrupted in pBR322 and not present in pUC18, can nucleate histone H5-induced nucleosome alignment, which can then spread to adjacent chromatin. Supporting this idea, a positioned five-nucleosome array appears to originate in the required region. Additionally, on a larger (6.9 kb) plasmid construction, the "chromatin organizing region" of pBR327 and adjacent DNA on one side of it exhibited preferred H5-induced nucleosome alignment.  相似文献   

18.
19.
A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition.  相似文献   

20.
We have previously shown the existence of two DNA-binding sites on the globular domain of H5 (termed GH5), both of which are required for nucleosome organisation, as judged by the protection of a 166 bp chromatosome intermediate during micrococcal nuclease digestion of chromatin. This supports a model in which GH5 contacts two duplexes on the nucleosome. However, studies of a nucleosome assembled on the 5 S rRNA gene have argued against the requirement for two DNA-binding sites for chromatosome protection, which has implications for the role of linker histones. We have used this proposed difference in the requirement for a second site on the globular domain in the two models as a means of investigating whether bulk and reconstituted 5 S nucleosomes are indeed fundamentally different. GH5 protects a 166 bp chromatosome in both "bulk" and 5 S systems, and in both cases protection is abolished when all four basic residues in site II are replaced by alanine. Binding to four-way DNA junctions, which present a pair of juxtaposed duplexes, is also abolished. Single mutations of the basic residues did not abolish chromatosome protection in either system, or binding to four-way junctions, suggesting that the residues function as a cluster. Both bulk and 5 S nucleosomes thus require a functional second DNA-binding site on GH5 in order to bind properly to the nucleosome. This is likely to reflect a similar mode of binding in each case, in which two DNA duplexes are contacted in the nucleosome. There is no indication from these experiments that linker histones bind fundamentally differently to 5 S and bulk nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号