首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to determine the role of sucrose-metabolizing enzymes in altered carbohydrate partitioning caused by heat stress. Potato (Solanum tuberosum L.) genotypes characterized as susceptible and tolerant to heat stress were grown at 19/17[deg]C, and a subset was transferred to 31/29[deg]C. Data were obtained for plant growth and photosynthesis. Enzyme activity was determined for sucrose-6-phosphate synthase (SPS) in mature leaves and for sucrose synthase, ADP-glucose pyrophosphorylase, and UDP-glucose pyrophosphorylase in developing tubers of plants. High temperatures reduced growth of tubers more than of shoots. Photosynthetic rates were unaffected or increased slightly at the higher temperature. Heat stress increased accumulation of foliar sucrose and decreased starch accumulation in mature leaves but did not affect glucose. SPS activity increased significantly in mature leaves of plants subjected to high temperature. Changes in SPS activity were probably not due to altered enzyme kinetics. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was reduced in tubers, albeit less quickly than leaf SPS activity. There was no interaction of temperature and genotype with regard to the enzymes examined; therefore, observed differences do not account for differences between genotypes in heat susceptibility.  相似文献   

2.
3.
The variation in starch content in healthy and Puccinia striiformsi-infected wheat leaves was measured from 5 to 15 days after inoculation. The starch content of diseased leaves relative to healthy leaves decreased from 5 to 9 days, increased from 9 to 12 days to twice that of healthy leaves, and decreased from 12 to 15 days after inoculation. Electron micrographs of plant tissues indicated that the starch accumulated in the chloroplasts of host cells adjacent to fungal hyphae. Variations in sugar phosphates, ATP, and inorganic phosphate were measured during the infection process. ADP-glucose pyrophosphorylase was extracted and partially purified from healthy and diseased leaves. When proportionate concentrations of sugar phosphates and inorganic phosphate found in healthy and diseased leaves during the infection process were placed in the assay mixture, ADP-glucose pyrophosphorylase activity was similar to the pattern of starch accumulation and was almost the inverse of the variation observed in inorganic phosphate in diseased leaves during the infection process. A mechanism to explain the accumulation of starch is presented and discussed. This mechanism is based on the regulation of ADP-glucose pyrophosphorylase by changes in effector molecule concentrations during the infection process. Reasons for these changes are presented.  相似文献   

4.
Biosynthesis of Starch in Chloroplasts   总被引:4,自引:2,他引:2       下载免费PDF全文
The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed.  相似文献   

5.
Nonstructural carbohydrate status and activities of ADP-glucose pyrophosphorylase (EC 2.7.7.27, ADPG pyrophosphorylase) and sucrose phosphate synthase (EC 2.4.1.14, SPS) were determined during ageing of tobacco ( Nicotiana tabacum L., cvs KY 14 and Speight G28) leaves sampled from control plants and from plants that had the apical meristem and subsequent axillary growth removed (detopped plants). Over the 30-day period shoot growth increased much more for control compared to detopped plants, but the increase in root growth was similar for both treatments. Dry matter and leaf area of the individual leaf used for enzyme and metabolite analysis were constant over time for controls but increased 5-fold for detopped plants. Ageing of control leaves was indicated by a progressive loss of chlorophyll and ribulose 1, 5-bisphosphate carboxylase (EC 4.1.1.39, Rubisco) activity; loss of these components was diminished for detopped plants. In contrast to chlorophyll and Rubisco activity, activities of ADPG pyrophosphorylase and SPS remained relatively constant over time for controls. Thus, under normal ageing conditions, changes in activities of ADPG pyrophosphorylase and SPS were not closely associated with changes in the standard senescence indicators chlorophyll and Rubisco activity. The activities of ADPG pyrophosphorylase and SPS were enhanced, relative to controls, within 6 days after applying the detopping treatment and activities remained high for the duration of the 30-day period. Detopping also led to increased concentrations of starch and sucrose, but the increases were not well correlated with changes in enzyme activities. The data indicated that the leaves of detopped plants functioned as both source leaves, with enhanced ability to synthesize carbohydrate, and sink leaves, with enhanced growth. Therefore, activities of ADPG pyrophosphorylase and SPS were more responsive to changes within an individual leaf than to changes in whole plant growth.  相似文献   

6.
Wang X  Peng F  Li M  Yang L  Li G 《Journal of plant physiology》2012,169(12):1173-1182
SnRK1 (sucrose non-fermenting-1-related protein kinase 1) plays an important role in plant carbon metabolism and development. To understand the mechanism of carbon and nitrogen metabolism regulated by MhSnRK1 from pingyitiancha (Malus hupehensis Rehd. var. pinyiensis Jiang), two transgenic lines (T2-7 and T2-9) over expressing this gene in tomato were studied. SnRK1 activity in the leaves of 2 transgenic lines was increased by 15-16% compared with that in the wild-type. The leaf photosynthetic rate in transgenic tomatoes was higher than the wild-type. The activity of sucrose synthase breakdown and ADP-glucose pyrophosphorylase was also increased, by approximately 25-36% and 44-48%, respectively, whereas sucrose synthase synthesis and sucrose phosphate synthase activities were unchanged. The content of starch in the leaves and red-ripening fruits was higher than that of the wild-type. The transgenic fruit ripened ~10 days earlier than the wild-type. The nitrate reductase activity (mgplant?1 h?1) shows no significant difference between the transgenic plant and the wild-type, but the N-uptake efficiency and root/shoot ratio in the T2-9 line were 15% and 35% higher than that in the wild-type, respectively. These results suggest that over expressing MhSnRK1 can increase both the carbon and nitrogen assimilation rate of the plant as well as regulate the development of fruit.  相似文献   

7.
Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities were followed during tuber development of Solanum tuberosum and prolonged storage at 4 and 11 C. Potato tuberization was accompanied by a sharp increase in starch synthesis simultaneous with a marked rise in ADP-glucose pyrophosphorylase activity. When tubers reached an average diameter of 1 centimeter (0.5 gram average tuber weight) and had already established 58% starch on a dry weight basis, ADP-glucose pyrophosphorylase increased 16- to 24-fold over its activity seen in low starch containing stolon tissue. During this same period UDP-glucose pyrophosphorylase increased approximately 2- to 3-fold. Although participation of UDP-glucose in starch formation can not be neglected, it is suggested that the onset of rapid non-photosynthetic potato tuber starch biosynthesis may be closely related to the simultaneous increase in ADP-glucose pyrophosphorylase activity.  相似文献   

8.
Interaction of cytochrome b5 with surfactant vesicles.   总被引:2,自引:1,他引:1       下载免费PDF全文
Lysates of protoplasts from the endosperm of developing grains of wheat (Triticum aestivum) were fractionated on density gradients of Nycodenz to give amyloplasts. Enzyme distribution on the gradients suggested that: (i) starch synthase and ADP-glucose pyrophosphorylase are confined to the amyloplasts; (ii) pyrophosphate: fructose-6-phosphate 1-phosphotransferase and UDP-glucose pyrophosphorylase are confined to the cytosol; (iii) a significant proportion (23-45%) of each glycolytic enzyme, from phosphoglucomutase to pyruvate kinase inclusive, is in the amyloplast. Starch synthase, ADP-glucose pyrophosphorylase and each of the glycolytic enzymes showed appreciable latency when assayed in unfractionated lysates of protoplasts. No activity of fructose-1,6-bisphosphatase was found in amyloplasts or in homogenates of endosperm. Antibody to plastidic fructose-1,6-bisphosphatase did not react positively, in an immunoblot analysis, with any protein in extracts of wheat endosperm. It is argued that wheat endosperm lacks significant plastidic fructose-1,6-bisphosphatase and that carbon for starch synthesis does not enter the amyloplast as a C-3 compound but probably as hexose phosphate.  相似文献   

9.
It is widely considered that ADP-glucose pyrophosphorylase (AGP) is the sole source of ADP-glucose linked to bacterial glycogen and plant starch biosynthesis. Genetic evidence that bacterial glycogen biosynthesis occurs solely by the AGP pathway has been obtained with glgC? AGP mutants. However, recent studies have shown that (i) these mutants can accumulate high levels of ADP-glucose and glycogen, and (ii) there are sources other than GlgC, of ADP-glucose linked to glycogen biosynthesis. In Arabidopsis, evidence showing that starch biosynthesis occurs solely by the AGP pathway has been obtained with the starchless adg1-1 and aps1 AGP mutants. However, mounting evidence has been compiled previewing the occurrence of more than one important ADP-glucose source in plants. In attempting to solve this 20-year-old controversy, in this work we carried out a judicious characterization of both adg1-1 and aps1. Both mutants accumulated wild-type (WT) ADP-glucose and approximately 2% of WT starch, as further confirmed by confocal fluorescence microscopic observation of iodine-stained leaves and of leaves expressing granule-bound starch synthase fused with GFP. Introduction of the sex1 mutation affecting starch breakdown into adg1-1 and aps1 increased the starch content to 8-10% of the WT starch. Furthermore, aps1 leaves exposed to microbial volatiles for 10 h accumulated approximately 60% of the WT starch. aps1 plants expressing the bacterial ADP-glucose hydrolase EcASPP in the plastid accumulated normal ADP-glucose and reduced starch when compared with aps1 plants, whereas aps1 plants expressing EcASPP in the cytosol showed reduced ADP-glucose and starch. Moreover, aps1 plants expressing bacterial AGP in the plastid accumulated WT starch and ADP-glucose. The overall data show that (i) there occur important source(s), other than AGP, of ADP-glucose linked to starch biosynthesis, and (ii) AGP is a major determinant of starch accumulation but not of intracellular ADP-glucose content in Arabidopsis.  相似文献   

10.
鲜食糯玉米采后糖代谢相关酶活性变化   总被引:1,自引:0,他引:1  
鲜食糯玉米采后腺苷二磷酸葡萄糖焦磷酸化酶(ADPGPPase)、尿苷二磷酸葡萄糖焦磷酸化酶(UDPGPPase)、束缚态淀粉合成酶(GBSS)、淀粉脱分支酶(DBE)等活性均呈现单峰曲线变化,第1~2天出现峰值然后略有下降;可溶性淀粉合成酶(SSS)活性呈较大幅度上升趋势,活性远高于采收初期;淀粉分支酶(SBE)在第3天出现极高峰值。与20℃贮藏温度相比,采后0℃低温贮藏可增强UDPGPPase活性,促进蔗糖降解;降低SSS和GBSS活性,延缓淀粉合成进程;抑制SBE活性,增强DBE活性,促进直链淀粉生成。  相似文献   

11.
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.  相似文献   

12.
The cellular distribution of the starch biosynthetic and degradative enzymes in protoplasts prepared from maize leaf mesophyll and bundle sheath cells was investigated. In conformity with the cellular distribution of starch, starch biosynthetic enzymes (soluble starch synthase, ADPglucose pyrophosphorylase, branching enzyme and starch Phosphorylase) were exclusively localized in the bundle sheath cells. In contrast, starch degradative enzymes (α-amylase, β-amylase and debranching enzyme) were present in both types of leaf cells. Isolated chloroplasts from bundle sheath cells were shown to contain 100% of the starch biosynthetic enzymes. However, approximately 60% of the activity of degradative enzymes and 67% of the activity of starch Phosphorylase was localized in bundle sheath chloroplasts.  相似文献   

13.
Several cDNA clones encoding two different ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) polypeptides denoted VfAGPC and VfAGPP were isolated from a cotyledonary library of Vicia faba L. Both sequences are closely related to AGPase small-subunit sequences from other plants. Whereas mRNA levels of VfAGPP were equally high in developing cotyledons and leaves, the mRNA of VfAGPC was present in considerable amounts only in cotyledons. During development of cotyledons, both mRNAs accumulated until the beginning of the desiccation phase and disappeared afterwards. The increase of AGPase activity in cotyledons during the phase of storage-product synthesis was closely followed by the accumulation of starch. The AGPase activity in crude extracts of cotyledons was insensitive to 3-phosphoglycerate whereas the activity from leaves could be activated more than five-fold. Inorganic phosphate inhibited the enzyme from both tissues but was slightly more effective on the leaf enzyme. There was a correlation at the cellular level between the distribution of VfAGPP and VfAGPC mRNAs and the accumulation of starch, as studied by in-situ hybridisation and by histochemical staining in parallel tissue sections of developing seeds, respectively. During the early phase of seed development (12–15 days after fertilization) VfAGPase mRNA and accumulation of starch were detected transiently in the hypodermal, chlorenchymal and outer parenchymal cell layers of the seed coat but not in the embryo. At 25 days after fertilization both synthesis of VfAGPase mRNA and biosynthesis of starch had started in parenchyma cells of the inner adaxial zone of the cotyledons. During later stages, the expression of VfAGPase and synthesis of starch extended over most of the cotyledons but were absent from peripheral cells of the abaxial zone, provascular and procalyptral cells.Abbreviations AGPase ADP-glucose pyrophosphorylase - DAF days after fertilization - Glc1P glucose-1-phosphate - 3-PGA 3-phosphoglycerate - VfAGPC AGPase subunit of Vicia faba mainly expressed in cotyledons - VfAGPP AGPase subunit of Vicia faba mainly expressed in leaves and cotyledons - pVfAGPC, pVfAGPP plasmids containing VfAGPC and VfAGPP, respectively This work was supported by the Bundesministerium für Forschung und Technologie BCT 0389, Molekular- und Zellbiologie von höheren Pflanzen und Pilzen. U.W acknowledges additional support by the Fonds der chemischen Industrie. We thank Elsa Fessel for excellent technical assistance.  相似文献   

14.
This paper addresses the controversial idea that ADPglucose pyrophosphorylase may be located in the cytosol in some non-photosynthetic plant organs. The intracellular location of the enzyme in developing barley endosperm has been investigated by isolation of intact amyloplasts. Amyloplast preparations contained 13–17% of the total endosperm activity of two plastidial marker enzymes, and less than 0.5% of the total endosperm activity of two cytosolic marker enzymes. Amyloplast preparations contained about 2.5% of the ADPglucose pyrophosphorylase activity, indicating that approximately 15% of the ADPglucose pyrophosphorylase activity in young endosperms is plastidial. Immunoblotting of gels of endosperm and amyloplast extracts also indicated that the enzyme is both inside and outside the amyloplast. Antibodies to the small subunits of the enzyme from barley and maize revealed two bands of protein of different sizes, one of which was located inside and the other outside the amyloplast. The plastidial protein was of the same size as a protein in the chloroplasts of barley leaves which was also recognized by these antibodies. It is suggested that the barley plant contains two distinct isoforms of ADPglucose pyrophosphorylase: one located in plastids (chloroplasts and amyloplasts) and the other in the cytosol of the endosperm. The role of the cytosolic ADPglucose pyrophosphorylase is unknown. Although it may contribute ADPglucose to starch synthesis, the total activity of ADPglucose pyrophosphorylase in the endosperm is far in excess of the rate of starch synthesis and the plastidial isoform is probably capable of catalysing the entire flux of carbon to starch.  相似文献   

15.
16.
Rice seed ADP-glucose pyrophosphorylase cDNA clones were isolated by screening a lambda expression library prepared from rice endosperm poly(A+) RNA with a heterologous antibody raised against the spinach leaf enzyme and subsequently by nucleic acid hybridization. One cDNA plasmid, possessing about 1650 nucleotides, was shown by both DNA and RNA sequence analysis to contain the complete ADP-glucose pyrophosphorylase coding sequence of 483 amino acids. The primary sequence displayed a putative leader peptide presumably required for transport of this nuclear encoded protein into the amyloplasts, a differentiated starch containing plastid. The leader peptide, however, showed little sequence homology with transit peptides displayed by other known nuclear encoded proteins localized in the chloroplasts. A comparison of the primary sequence of the putative mature subunit to the Escherichia coli pyrophosphorylase showed two regions displaying significant homology. These two conserved regions contain residues shown previously to be essential for the allosteric regulation and catalytic activity of the E. coli enzyme. Differences in the primary sequences of the plant and bacterial enzyme may reflect the distinct nature of the allosteric effectors that control these enzymes.  相似文献   

17.
Cultures of carrot (Daucus carota L.) in a medium without added 2,4-dichlorophenoxyacetic acid were separated into fractions of embryos at different stages of development (large globular and heart, torpedo, and germinating) and nonembryogenic cells. The average starch content per cell in these fractions was similar. However, due to the smaller sizes of the cells of the embryos relative to the nonembryogenic cells, starch content per weight of tissue was higher in the embryos. The ADP-glucose pyrophosphorylase activity per cell in the nonembryogenic cells was double that of the embryo cells. Furthermore, the ratio of ADP-glucose pyrophosphorylase to starch was over 2-fold higher in the nonembryogenic cells, indicating that starch content is not simply determined by ADP-glucose pyrophosphorylase levels. ADP-glucose pyrophosphorylase activity of all culture fractions was directly proportional to the level of a single 50 kilodalton polypeptide detected by immunoblot analysis, using antiserum raised to the purified spinach leaf enzyme. In the same immunoblot analysis, novel polypeptides of 63 and 100 kilodalton were detected in embryos but were absent from nonembryogenic cells. This is one of the few reported examples of specific proteins which differentially accumulate in embryos and nonembryogenic cells.  相似文献   

18.
19.
Antibodies were used to probe the degree of association of starch biosynthetic enzymes with starch granules isolated from maize (Zea mays) endosperm. Graded washings of the starch granule, followed by release of polypeptides by gelatinization in 2% sodium dodecyl sulfate, enables distinction between strongly and loosely adherent proteins. Mild aqueous washing of granules resulted in near-complete solubilization of ADP-glucose pyrophosphorylase, indicating that little, if any, ADP-glucose pyrophosphorylase is granule associated. In contrast, all of the waxy protein plus significant levels of starch synthase I and starch branching enzyme II (BEII) remained granule associated. Stringent washings using protease and detergent demonstrated that the waxy protein, more than 85% total endosperm starch synthase I protein, and more than 45% of BEII protein were strongly associated with starch granules. Rates of polypeptide accumulation within starch granules remained constant during endosperm development. Soluble and granule-derived forms of BEII yielded identical peptide maps and overlapping tryptic fragments closely aligned with deduced amino acid sequences from BEII cDNA clones. These observations provide direct evidence that BEII exits as both soluble and granule-associated entities. We conclude that each of the known starch biosynthetic enzymes in maize endosperm exhibits a differential propensity to associate with, or to become irreversibly entrapped within, the starch granule.  相似文献   

20.
In an attempt to study the importance of starch synthesis inleaves with respect to sink-source interactions, we investigateddaily turnover of carbohydrates in leaves of transgenic potatoplants inhibited for ADP-glucose pyrophosphorylase (AGPase).Down-regulation of AGPase has been performed using two differentpromoters: the near-constitutive CaMV 35S promoter, and theSTLSI promoter which is active in photosynthetic cells only.Residual AGPase activity in leaves was between 6 and 30% inindividual transformants as compared to wild-type potato plants.We found that: (i) photosynthesis is not significantly alteredrelative to wild-type plants; (ii) levels of starch are markedlyreduced in leaves of transgenic plants; (iii) levels of solublesugars and malate are largely unaffected by the inhibition ofAGPase; (iv) the reduction of starch synthesis leads to a higherportion of assimilated carbon being transported from leavesto sink tissues during the light period; (v) altered leaf exportcharacteristics do not change tuber yield under greenhouse conditions.Collectively, these data demonstrate a striking flexibilityof the potato plant with respect to day/night rhythms of carbonexport from leaves and utilization by the major storage sinks,i.e. developing tubers. (Received November 1, 1994; Accepted March 2, 1995)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号