首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of copper on the electrical membrane properties of the isolated-perfused 6-day rabbit blastocyst was studied to understand changes in the intrauterine environment caused by the copper IUD. Blastocysts were perfused in an environmental chamber containing Krebs-Ringer bicarbonate with 1 mg bovine serum albumin/ml. Electrical measurements made included short-circuit current (SCC) (the net result of currents produced by all net active ionic transport processes when there is no electrochemical gradient), transmural potential difference (p.d.), and conductance (computed from the ratio of open circuit p.d. to SCC). Control values were obtained and 9 experiments were performed in which 10 mcl aliquots of ?cuCl2 was added to the bathing solution. Electrical parameters of solutions containing 10-5M concentration CuCl2 remained essentially unchanged. 2.5 x 10-5 M reduced average p.d. 25% and average SCC 12%, WHILE 5 X 10-4C-5 M further reduced p.d. 48% and SCC 38% after 30 minutes. At 7.5 x 10-5 M p.d. was depressed 89% after 10 minutes with 1/3 of the values being positive, and SCC values decreased to 71% at 10 minutes and then increased to 77% of control values at 30 minutes. The subsequent changes in p.d. and SCC caused a 6-fold increase in membrane conductance. 9 experiments were performed on a 2nd group of blastocysts in which the effects of a single addition of CuCl2 at 10-4 M were studied. Average p.d. decreased reversing to positive values at 30 minutes. There was a biphasic response to SCC decreasing to 46% after 20 minutes then increasing to 1.7 times control values. Single additions of copper ions collapsed all blastocysts after a return to copper-free solutions. Serial additions showed only 3 out of 9 collapsing under similar conditions. Further experiments involving simultaneous SCC-isotope flux are necessary to determine which specific actively transported ions are affected by copper and to determine the effect on conductance. It is suggested that the action of copper in these experiments might have some bearing on the effectiveness of the copper IUD.  相似文献   

2.
Copper cells were originally identified in Drosophila midgut epithelium by their striking orange fluorescence in copper-fed larvae. Here, we examined copper cell fluorescence in light of the previous observations that (1) a similar fluorescent signal in yeast is produced by a complex between copper and metallothionein, and (2) metallothionein is expressed constitutively in the copper cell region and inducibly in other regions of the Drosophila midgut. Pulse-feeding experiments with 1 mM CuCl2 revealed that fluorescence appeared rapidly in copper cells (<5 min) and slowly in other cells of the midgut (days), suggesting a constitutive cofactor in the former and an inducible cofactor in the latter. Fluorescence was also detected in Drosophila S2 tissue culture cells after induction of metallothionein synthesis by addition of CuCl2 to the growth medium. Thus, fluorescence coincided spatially and temporally with the expression of metallothionein. Fluorescence was also linked to the acid-secreting activity of copper cells. Fluorescence was not observed when acid secretion was inhibited by a mutation in the alpha spectrin gene and acidification was blocked in copper-fed wild-type larvae. However, acidification was restored after a 1-day chase period in which the fluorescent signal became sequestered within a vesicular compartment. We therefore conclude that copper cell fluorescence is most probably attributable to a cytoplasmic copper-metallothionein complex, suggesting an unanticipated role for metallothionein in acid-secreting cells.  相似文献   

3.
4.
Hepatic accumulation of protoporphyrin-IX (PP-IX) in erythropoietic protoporphyria (EPP) or X-linked-dominant protoporphyria (XLP) cause liver damage. Hepatocyte nuclear lamin aggregation is a sensitive marker for PP-IX-mediated liver injury. We tested the hypothesis that extracellular or intracellular protoporphyria cause damage to different subcellular compartments, in a light-triggered manner. Three hepatoma cell lines (HepG2, Hepa-1, and Huh-7) were treated with exogenous PP-IX (mimicking XLP extrahepatic protoporphyria) or with the iron chelator deferoxamine and the porphyrin precursor 5-aminolevulinic acid (ALA) (mimicking intracellular protoporphyrin accumulation in EPP). Exogenous PP-IX accumulated predominantly in the nuclear fraction and caused nuclear shape deformation and cytoplasmic vacuoles containing electron-dense particles, whereas ALA+deferoxamine treatment resulted in higher PP-IX in the cytoplasmic fraction. Protein aggregation in the nuclear and cytoplasmic fractions paralleled PP-IX levels and, in cell culture, the effects were exclusively ambient light-mediated. PP-IX and ALA caused proteasomal inhibition, whereas endoplasmic reticulum protein aggregation was more prominent in ALA-treated cells. The enhanced ALA-related toxicity is likely due to generation of additional porphyrin intermediates including uroporphyrin and coproporphyrin, based on HPLC analysis of cell lysates and the culture medium, as well as cell-free experiments with uroporphyrin/coproporphyrin. Mouse livers from drug-induced porphyria phenocopied the in vitro findings, and mass spectrometry of liver proteins isolated in light/dark conditions showed diminished (as compared with light-harvested) but detectable aggregation under dark-harvested conditions. Therefore, PP-IX leads to endoplasmic reticulum stress and proteasome inhibition in a manner that depends on the source of porphyrin buildup and light exposure. Porphyrin-mediated selective protein aggregation provides a potential mechanism for porphyria-associated tissue injury.  相似文献   

5.
Porphyrias are rare blood disorders caused by genetic defects in the heme biosynthetic pathway and are associated with the accumulation of high levels of porphyrins that become cytotoxic. Porphyrins, due to their amphipathic nature, spontaneously associate into different nanostructures, but very little is known about the cytotoxic effects of these porphyrin nanostructures. Previously, we demonstrated the unique ability of fluorescent biological porphyrins, including protoporphyrin-IX (PP-IX), to cause organelle-selective protein aggregation, which we posited to be a major mechanism by which fluorescent porphyrins exerts their cytotoxic effect. Herein, we tested the hypothesis that PP-IX-mediated protein aggregation is modulated by different PP-IX nanostructures via a mechanism that depends on their oxidizing potential and protein-binding ability. UV–visible spectrophotometry showed pH-mediated reversible transformations of PP-IX nanostructures. Biochemical analysis showed that PP-IX nanostructure size modulated PP-IX-induced protein oxidation and protein aggregation. Furthermore, albumin, the most abundant serum protein, preferentially binds PP-IX dimers and enhances their oxidizing ability. PP-IX binding quenched albumin intrinsic fluorescence and oxidized His-91 residue to Asn/Asp, likely via a previously described photo-oxidation mechanism for other proteins. Extracellular albumin protected from intracellular porphyrinogenic stress and protein aggregation by acting as a PP-IX sponge. This work highlights the importance of PP-IX nanostructures in the context of porphyrias and offers insights into potential novel therapeutic approaches.  相似文献   

6.
The interaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine or NC) and its copper complex with Ehrlich ascites tumor cells was studied. NC is frequently used as a negative control in studies of in vitro DNA degradation by copper phenanthroline and has also found use as a potential inhibitor of damage from oxidative stress in biological systems. NC inhibited Ehrlich cell growth in monolayer culture over 48 h treatment by 50% at 0.05 nmol/10(5) cells. Addition of 5- to 100-fold ratios of CuCl2 to NC (at 0.035 nmol NC/10(5) cells) produced progressively more growth inhibition. Addition of 1:0.5 ratios of NC to CuCl2 over the range of NC concentrations 0.08-0.2 nmol/10(5) cells/mL resulted in DNA single-strand breakage during 1-h treatments as measured by DNA alkaline elution. Concomitant addition of catalase or dimethyl sulfoxide (DMSO) inhibited DNA strand scission, while superoxide dismutase enhanced breakage. Catalase and DMSO also inhibited induction of membrane permeability by the copper complex of NC. These cellular effects apparently result from the intracellular generation of hydroxyl radical from H2O2. NC facilitated the uptake of copper into cells, though it was initially bound as a copper-histidine-like complex. The internalized copper was reduced to Cu(I), bound mostly as (NC)2Cu(I). To explain the (NC)2Cu-dependent generation of hydroxyl radical, it is hypothesized that glutathione successfully competes for Cu(I), converting it to a redox-active form that can catalyze the reduction of molecular oxygen to .OH. Model studies support this view. Radical scavengers did not reverse growth inhibition produced by NC or NC + CuCl2.  相似文献   

7.
Menkes disease is a fatal neurodegenerative disorder in infants caused by mutations in the gene ATP7A which encodes a copper (Cu) transporter. Defects in ATP7A lead to accumulated copper in the small intestine and kidneys and to copper deficiencies in the brain and the liver. The copper level in the kidney in postnatal copper-treated Menkes patients may reach toxic levels. The mouse model, mosaic Atp7a (mo-ms) recapitulates the Menkes phenotype and die about 15.75±1.5 days of age. In the present study we found that prenatal treatment of mosaic murine fetuses throughout gestation days 7, 11, 15 and 18 with a combination of CuCl(2) (50 mg/kg) and dimethyldithiocarbamate (DMDTC) (280 mg/kg) leads to an increase in survival to about 76±25.3 days, whereas treatment with CuCl(2) alone (50 mg/kg) only leads to survival for about 21 days ±5 days. These copper-DMDTC treated mutants showed an improved locomotor activity performance and a gain in body mass. In contrast to treatment with CuCl(2) alone, a significant increase in the amount of copper was observed in the brain after prenatal copper-DMDTC treatment as well as a decrease in the amount of accumulated copper in the kidney, both leading towards a normalization of the copper level. Although copper-DMDTC prenatal treatment only leads to a small increase in the sub-normal copper concentration in the liver and to an increase of copper in the already overloaded small intestine, the combined results suggest that prenatal copper-DMDTC treatment also should be considered for humans.  相似文献   

8.
Yu Q  Zhuang X  Yuan Z  Qi W  Wang Q  Tan X 《Bioresource technology》2011,102(3):3445-3450
The impact of the metal salts NaCl, KCl, CaCl(2), MgCl(2), FeCl(3), FeCl(2), and CuCl(2), particularly the latter, on the decomposition of hemicellulose and lignin from sweet sorghum bagasse in liquid hot water pretreatment processing was studied in an attempt to enhance the recovery of sugars. Transition metal chlorides significantly enhanced the hemicellulose removal compared to the alkaline earth metal chlorides and alkaline metal chlorides, contributing to the formation of a saccharide-metal cation intermediate complex. FeCl(2) greatly increased xylose degradation and about 60% xylan was converted into non-saccharide products. In contrast, an excellent total and monomeric xylose recovery was obtained after the CuCl(2) pretreatment. Most of the lignin was deposited on the surface of the residual solid with droplet morphologies after this pretreatment, and about 20% was degraded into monomeric products. The total recovery of sugars from sweet sorghum bagasse with 0.1% CuCl(2) solution pretreatment and 48 h enzymatic digestibility, reached 90.4%, which is superior to the recovery using hot water pretreatment only.  相似文献   

9.
The effect of cupric ions on the human uterus and the involvement of prostaglandins (PGs) in mediating this effect was studied by recording of isometric contractions of isolated myometrial strips and pieces of uterine arteries, and by intrauterine pressure recordings in women before the onset of menstruation. In vitro, CuCl2 in concentrations of 10(-4) M and higher caused a significant inhibition of myometrial contractile activity, but no effect on the artery preparations was seen. Furthermore, the contractile response of myometrial strips to PGF2 alpha and PGE2 (10 ng/ml) decreased in the presence of CuCl2 in concentrations of 5 and 50 mumol. In vivo, instillations of 0.3, 1.0 and 2.0 mM of CuCl2 in 0.7 ml of saline solution into the uterine cavity caused a dose-dependent stimulation of uterine activity, but after pretreatment with naproxen, 500 mg orally, the effect of these substances was abolished. After naproxen treatment, but during infusion of PGF2 alpha (5 micrograms/min), the response to the CuCl2 solutions was partially restored. It is suggested that cupric ions, at high concentrations, have an inhibiting effect on myometrial activity. The stimulatory effect of low doses of CuCl2 seen after instillation into the uterine cavity is largely exerted via initiation of synthesis and release of endometrial PGs.  相似文献   

10.
Activated protein C (APC) is useful in the treatment of sepsis. Ischemia and acidosis, which often accompany sepsis, cause the release of copper from loosely bound sites. We investigated (i) whether physiological concentrations of copper inhibit APC anticoagulant activity and (ii) if any copper-induced APC inhibition is reversible by human serum albumin (HSA) or a high-affinity copper-binding analogue of the human albumin N-terminus, d-Asp-d-Ala-d-His-d-Lys (d-DAHK). APC activity after 30 min of incubation with CuCl2 (10 microM) was decreased 26% below baseline. HSA, both alone and when combined with various ratios of CuCl2, increased APC activity significantly above baseline. d-DAHK alone and 2:1 and 4:1 ratios of d-DAHK:CuCl2 also increased APC activity. APC contained 1.4 microM copper, which helps explain the increased APC activity with HSA and d-DAHK alone. These in vitro results indicate that copper inhibits APC activity and that albumin and d-DAHK reverse the copper-induced APC deactivation.  相似文献   

11.
High copper concentration is toxic for living organisms including humans. Biosorption is a bioremediation technique that can remove copper and other pollutants from aqueous medium and soils, consequently cleaning the environment. The aim of this study was, therefore, to investigate the influence of different copper compounds (Cu(II) as CuCl2; Cu(II) as CuSO4; and Cu(I) as CuCl) on copper bioreduction and biosorption using four copper-resistant bacteria isolated from the rhizosphere of two plants (Avena sativa and Plantago lanceolata) in aqueous matrix. Copper resistance profile, bioreduction, and biosorption after 48 h of incubation were evaluated. The isolates displayed high copper resistance. However, isolate A1 did not grow very well in the CuCl2 and isolate T5 was less resistant to copper in aqueous solutions amended with CuCl (Cu(I)). The best copper source for copper bioreduction and biosorption was CuSO4 and the isolates removed as much as ten times more copper than in aqueous solutions amended with the other copper compounds. Moreover, Cu(I) did not succumb to biosorption, although the microbes were resistant to aqueous solutions of CuCl. In summary, Cu(II) from CuSO4 was furthermost susceptible to bioreduction and biosorption for all isolates. This is an indication that copper contamination of the environment from the use of CuSO4 as an agrochemical is amenable to bioremediation.  相似文献   

12.
Microsatellite instability is a phenomenon that is well characterized in mismatch repair-deficient tumor cell lines, including the potential etiological role of endogenous DNA damage. However, our understanding of microsatellite mutational mechanisms in repair-proficient, nontumorigenic cells is limited. We determined microsatellite mutation frequencies for human lymphoblastoid cells using an episomal DNA shuttle vector in which a (TTCC/AAGG)(9) microsatellite is inserted in-frame within the herpes simplex virus thymidine kinase (HSV-tk) gene. The responses of plasmid-bearing cells to reactive oxygen species or alkylating agents were compared after treatment with hydrogen peroxide (H(2)O(2)) and N-ethyl-N-nitrosourea (ENU). H(2)O(2) treatment induced a statistically significant increase in overall HSV-tk mutation frequency relative to controls, with catalase reducing the effect. H(2)O(2) treatment increased the mutation frequency within the microsatellite and the HSV-tk coding region to a similar extent (five and six-fold, respectively, relative to the control). Mutational specificity analyses demonstrated that the proportion of mutations within the microsatellite is not statistically different among the H(2)O(2), catalase, and PBS treatment groups. In contrast, treatment of cells bearing the microsatellite vector with ENU altered the mutational spectrum, relative to solvent control. ENU induced the expected base substitutions within the HSV-tk coding region, but did not increase the microsatellite mutation frequency. The low level of microsatellite mutagenesis observed after reactive oxygen species (ROS) insult likely reflects the normal repair processes of these nontumorigenic, repair-competent cells. Our ex vivo experiments demonstrate the manner in which repetitive DNA in normal human cells might respond to endogenous mutagens.  相似文献   

13.
Preparations of copper(II) and palladium(II) complexes of 4-amino-5-methylthio-3-(2-pyridyl)-1,2,4-triazole (L(1)) and the copper(II) complex of 1,4-dihydro-4-amino-3-(2-pyridyl)-5-thioxo-1,2,4-triazole (HL) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of HL (1), [CuCl(2)(H(2)L)]Cl.2H(2)O (2a), cis-[CuCl(2)(L(1))] (3), and cis-[PdCl(2)(L(1))] (4) have been determined by single-crystal X-ray diffraction. The HL ligand acts as a N,S bidentate through the thioxo moiety and the exo-amino group whilst the ligand L(1) forms N,N coordination complexes through the pyridine and triazole nitrogen atoms. Speciation in solution of the systems Cu/HL and Cu/L(1) have been determined by means of potentiometry and spectrophotometry as well as for the Cu/L(1)/A (HA=glycine) system in order to determine species present at physiological pH. Antiproliferative activity of these complexes and their ligands was evaluated, using the AlamarBlue Assay, on normal human fibroblasts (HF) and human fibrosarcoma tumor (HT1080) cells. The copper compounds cis-[CuCl(2)(H(2)L)]Cl and cis-[CuCl(2)(L(1))] exerted significant antiproliferative activity of both normal and neoplastic cells; although dose-response experiments revealed that the HT1080 cell line was more sensitive to the tested drugs than normal fibroblasts.  相似文献   

14.
The in vivo interaction between the chemical carcinogen ethylnitrosourea (ENU) and the oncogenic simian virus 40 (SV40) was studied. Inbred newborn Syrian golden hamsters were injected subcutaneously with SV40 (5 x 10(6) plaque-forming units), ENU (0.5% solution, 125 or 25 mg/kg body wt), or equal mixtures of the two. Animals that received SV40 and ENU developed more tumors (100% vs 52%) within a shorter latent period (10 weeks vs 18 weeks) than animals that received SV40 alone. Animals given SV40 and ENU showed increased mortality and increased metastatic tumors (54.2% vs 30.8%) compared with those given SV40 alone. The SV40 and ENU group also exhibited multiple (greater than 10 nodules) pulmonary metastases (33.3% vs 7.7%) and metastases in multiple organs (12.5% vs 0%) compared with animals injected with SV40 alone. No difference in primary tumor size, histology, and SV40 T-antigen content was detected between SV40- and SV40/ENU-induced tumors. Four weeks after SV40 or SV40 plus ENU treatment, animals were challenged intradermally with 2.7 x 10(6) SV40-transformed hamster cells. Five weeks after challenge, 89.5% of the animals treated with SV40 and ENU and 45.4% of animals treated with SV40 developed tumors at the challenge site. Newborn animals given SV40 and ENU developed larger tumors at the challenge site (P less than 0.002) than newborns treated with SV40 alone. Thus, administration of ENU to hamsters during the neonatal stage of development produced a long-lasting systemic effect that enhanced tumor development by transplanted SV40-transformed hamster cells.  相似文献   

15.
The aim of the present study was the synthesis, the determination of formation constants, and the evaluation of the antiproliferative activity of two copper(II) complexes formed with triazole-type ligands. The synthesis of the unsymmetrical triazole ligand 4-amino-3-aminomethyl-5-methyl-1,2,4-triazole (L1), and its copper(II) complex is reported. The ligand was prepared by functionalization of the carboxylate function of tert-butyloxycarbonyl (BOC) protected glycine O-methyl ester. All intermediates and final products were isolated and characterized with IR, 1H NMR, and elemental analysis. X-ray structures of the ligand as a sulfate salt ((H2L1)2SO4.H2O) and the copper(II) complex [CuCl2(L1)(2)] are described. The ligand forms a (N,N) bidentate chelate with the amino group and one triazole nitrogen atom. The tetragonally distorted octahedral coordination of Cu(II) results from two axially coordinated chloride ions. Protonation constants for L1 and speciation of the Cu(II)/L1 system were determined in 0.1 M aqueous KCl solution at 25 degrees C. Complexes formed in solution were also characterized by visible spectrophotometry. Ligand substitution competition between L1 and glycine has also been studied using potentiometric titrations. Antiproliferative activities of ([CuCl2(L1)2]) and [CuCl2(H2L2)]Cl, where HL2 is the 5-thioxo analog of L1, against human tumor cell lines HT1080 and HT29 as well as normal human fibroblasts (HF) are presented along with the antiproliferative activities of L1, CuCl2, and cisplatin. Activity of these two complexes are discussed and compared with the activity of analogous compounds reported in the literature which contain pyridyl groups in place of the aminomethyl group. In particular, it is suggested that a lypophilic residue such as a pyridyl group is important for antiproliferative activity of this class of compounds.  相似文献   

16.
Mechanistic details of the interaction of 1,10-phenanthroline and its copper complex with Ehrlich ascites tumor cells were examined, using inhibition of cell proliferation, DNA breakage, and increased membrane permeability as indices of cellular damage. The metal chelating agent, 1,10-phenanthroline (OP), the 1:0.5 complex of 1,10-phenanthroline and CuCl2 [(OP)2Cu], and CuCl2 inhibited growth of Ehrlich ascites tumor cell monolayers during 48-h treatments by 50% at about 3.5, 2, and 70 nmol/10(5) cells/mL, respectively. (OP)2Cu at 10 nmol/10(5) cells also enhanced uptake of trypan blue dye during 6 h of treatment, while dye uptake in OP- and CuCl2-treated cells remained similar to controls. DNA breakage, measured by DNA alkaline elution, was produced during 1-h treatments with (OP)2Cu at drug/cell ratios similar to those producing growth inhibition. Copper uptake was similar for both (OP)2Cu and CuCl2. Electron spin resonance (ESR) spectroscopy suggested that cellular ligands bind copper added as (OP)2Cu or CuCl2 and then undergo time-dependent reductions of Cu(II) to Cu(I) for both forms. Inhibition of (OP)2Cu-induced single-strand scission and trypan blue uptake by scavengers of activated oxygen is consistent with participation of superoxide and H2O2 in both processes. In contrast, superoxide dismutase (SOD) did not reduce the magnitude of the fraction of cellular DNA appearing in lysis fractions prior to alkaline elution of (OP)2Cu-treated cells. Dimethyl sulfoxide (DMSO) inhibited uptake of trypan blue dye but did not inhibit DNA strand scission produced by (OP)2Cu. Thus, multiple mechanisms for generation of oxidative damage occur in (OP)2Cu-treated cells. Growth inhibition produced by OP or (OP)2Cu, as well as the low levels of strand scission produced by OP, was not reversed by scavengers.  相似文献   

17.
Mice were X-irradiated on day 14, 15 or 16 of gestation with 1.0 Gy. This did not result in an increased tumour frequency in the offspring until 12 months. Mice treated with ethylnitrosourea (ENU) (45 mg/kg) on these gestation days developed a significantly increased tumour frequency in the lungs and liver, and in the ovaries after treatment on day 15 of gestation. Additionally this experiment was the first to show that ENU treatment on gestation day 14, 15 or 16 results in haemangiosarcomas of the subcutis at a low incidence (2.0, 2.4, 2.6 per cent). After combined treatment with these two agents in the sequence X+ENU and an interval of 4 h, a significantly increased incidence rate of animals with tumours was observed in the offspring treated on gestation day 14 or 16. Moreover, the treatment on gestation day 16 exhibited the highest tumour frequency per examined animal (5.7) of all treatment groups. This result is due to a relatively uniform increase of all tumor types. Within this pattern, the frequency of liver tumours was most marked. The diagnosed liver tumours were significantly augmented after X+ENU treatment on day 16. In the reverse sequence (ENU+X), the total tumour outcome was not significantly altered compared with the effects of ENU alone. However, detailed analysis also showed a significant augmentation of the liver tumour frequency with treatment on day 15.  相似文献   

18.
1. Carbaryl, a carbamate used as a pesticide, increases the short-circuit current (SCC) across the isolated frog skin in a dose-dependent manner. 2. This effect is due to the stimulation of sodium absorption and chloride secretion. 3. Carbaryl action on short-circuit current is unrelated to its inhibitory power on cholinesterase; this statement is supported by two experimental results: (a) carbaryl is equally active on both sides of the skin, (b) atropine pretreatment does not inhibit the carbaryl action on SCC.  相似文献   

19.
Summary Caffeine, given during interfraction interval, abolishes the sparing effect of dose fractionation observed for delay of pupariation inMusca domesti ca larvae. When given as postirradiation treatment after single exposure, caffeine increases the delay in a synergistic manner. Pretreatment of the larvae with ascorbic acid for 3 h protects from radiation-induced delay whereas pretreat ment with caffeine does not have any effect. Combination of ascorbic acid and caffeine pretreatment protects the larvae only at low concentration (0.05%) and not at high concentration (0.1%).  相似文献   

20.
CV1 and A549 cells were grown in the presence of 64Cu porphyric complex, 64CuCl2, or 67CuCl2. Radioactive copper determinations were performed on whole cells and on isolated cellular DNA. 125IUdR was used to calibrate the particular extraction and purification procedures we developed because of the half-lives of 64Cu and 67Cu. The results obtained have shown that some radioactive copper atoms remained firmly bound to the DNA molecule. Their amount was of the same order when using two different DNA isolation methods for the two cell lines studied. No significant differences were found when 64Cu was used as CuCl2 or as porphyric complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号