首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mechanical stress induces auto/paracrine ATP release from various cell types, but the mechanisms underlying this release are not well understood. Here we show that the release of ATP induced by hypotonic stress (HTS) in bovine aortic endothelial cells (BAECs) occurs through volume-regulated anion channels (VRAC). Various VRAC inhibitors, such as glibenclamide, verapamil, tamoxifen, and fluoxetine, suppressed the HTS-induced release of ATP, as well as the concomitant Ca(2+) oscillations and NO production. They did not, however, affect Ca(2+) oscillations and NO production induced by exogenously applied ATP. Extracellular ATP inhibited VRAC currents in a voltage-dependent manner: block was absent at negative potentials and was manifest at positive potentials, but decreased at highly depolarized potentials. This phenomenon could be described with a "permeating blocker model," in which ATP binds with an affinity of 1.0 +/- 0.5 mM at 0 mV to a site at an electrical distance of 0.41 inside the channel. Bound ATP occludes the channel at moderate positive potentials, but permeates into the cytosol at more depolarized potentials. The triphosphate nucleotides UTP, GTP, and CTP, and the adenine nucleotide ADP, exerted a similar voltage-dependent inhibition of VRAC currents at submillimolar concentrations, which could also be described with this model. However, inhibition by ADP was less voltage sensitive, whereas adenosine did not affect VRAC currents, suggesting that the negative charges of the nucleotides are essential for their inhibitory action. The observation that high concentrations of extracellular ADP enhanced the outward component of the VRAC current in low Cl(-) hypotonic solution and shifted its reversal potential to negative potentials provides more direct evidence for the nucleotide permeability of VRAC. We conclude from these observations that VRAC is a nucleotide-permeable channel, which may serve as a pathway for HTS-induced ATP release in BAEC.  相似文献   

3.
The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel.  相似文献   

4.
Voltage-dependent anion channel (VDAC) is a multi-functional channel protein in the mitochondrial outer membrane of all eukaryotes. It is involved in extensive physiological and pathophysiological processes. However there is only scant information about VDAC in mammalian reproduction, fertility and development in the past. It is now recognized through recent studies that VDAC is present in male mammalian germinal tissues and cells, and plays crucial roles in spermatogenesis, sperm maturation and fertilization. This review will discuss the presence, localization and function of VDAC in mammalian spermatozoa.  相似文献   

5.
Activation of volume-regulated anion current (VRAC) plays a key role in the maintenance of cellular volume homeostasis. The mechanisms, however, that regulate VRAC activity are not fully understood. We have examined whether VRAC activation is modulated by the cholesterol content of the membrane bilayer. The cholesterol content of bovine aortic endothelial cells was increased by two independent methods: (a) exposure to a methyl-beta-cyclodextrin saturated with cholesterol, or (b) exposure to cholesterol-enriched lipid dispersions. Enrichment of bovine aortic endothelial cells with cholesterol resulted in a suppression of VRAC activation in response to a mild osmotic gradient, but not to a strong osmotic gradient. Depletion of membrane cholesterol by exposing the cells to methyl-beta-cyclodextrin not complexed with cholesterol resulted in an enhancement of VRAC activation when the cells were challenged with a mild osmotic gradient. VRAC activity in cells challenged with a strong osmotic gradient were unaffected by depletion of membrane cholesterol. These observations show that changes in membrane cholesterol content shift VRAC sensitivity to osmotic gradients. Changes in VRAC activation were not accompanied by changes in anion permeability ratios, indicating that channel selectivity was not affected by the changes in membrane cholesterol. This suggests that membrane cholesterol content affects the equilibrium between the closed and open states of VRAC channel rather than the basic pore properties of the channel. We hypothesize that changes in membrane cholesterol modulate VRAC activity by affecting the membrane deformation energy associated with channel opening.  相似文献   

6.
The key mechanism responsible formaintaining cell volume homeostasis is activation ofvolume-regulated anion current (VRAC). The role of hemodynamicshear stress in the regulation of VRAC in bovine aortic endothelialcells was investigated. We showed that acute changes in shear stresshave a biphasic effect on the development of VRAC. A shear stress stepfrom a background flow (0.1 dyn/cm2) to 1 dyn/cm2 enhanced VRAC activation induced by an osmoticchallenge. Flow alone, in the absence of osmotic stress, did not induceVRAC activation. Increasing the shear stress to 3 dyn/cm2,however, resulted in only a transient increase of VRAC activity followed by an inhibitory phase during which VRAC was gradually suppressed. When shear stress was increased further (5-10dyn/cm2), the current was immediately strongly suppressed.Suppression of VRAC was observed both in cells challenged osmoticallyand in cells that developed spontaneous VRAC under isotonic conditions. Our findings suggest that shear stress is an important factor inregulating the ability of vascular endothelial cells to maintain volume homeostasis.

  相似文献   

7.
The voltage-dependent anion channel   总被引:8,自引:0,他引:8  
Recently, it has been recognized that there is a metabolic coupling between the cytosol and mitochondria, where the outer mitochondrial membrane (OMM), the boundary between these compartments, has important functions. In this crosstalk, mitochondrial Ca2+ homeostasis and ATP production and supply play a major role. The primary transporter of ions and metabolites across the OMM is the voltage-dependent anion channel (VDAC). The interaction of VDAC with Ca2+, ATP glutamate, NADH, and different proteins was demonstrated, and these interactions may regulate OMM permeability. This review includes information on VDAC purification methods, characterization of its channel activity (selectivity, voltage-dependence, conductance), and the regulation of VDAC channel by ligands, such as Ca2+, glutamate and ATP and touches on many aspects of the physiological relevance of VDAC to Ca2+ homeostasis and mitochondria-mediated apoptosis.  相似文献   

8.
The eukaryotic porin or voltage-dependent anion-selective channel (VDAC1) is a pore-forming protein discovered twenty five years ago in the mitochondrial outer membrane. Its gene in eukaryotes is known, but its tertiary structure has never been solved. Structure predictions highlight the presence of several amphipathic beta-strands possibly organised in a beta-barrel. VDAC1 has recently been described as being a NADH:ferricyanide reductase in the plasma membrane. There it affects the regulation of cell growth and death. Physiological cell death (apoptosis) has become a major research focus of biomedical research. Regulation of the enzyme will have impacts on cancer and autoimmune diseases (insufficient apoptosis) as well as neurodegenerative diseases (excessive apoptosis). VDAC1 in the plasma membrane establishes a novel level of apoptosis regulation putatively via its redox activity.  相似文献   

9.
Caveolae are flask-shaped invaginations of the plasma membrane formed by the association of caveolin proteins with lipid rafts. In endothelial cells, caveolae function as signal transduction centers controlling NO synthesis and mechanotransduction. We now provide evidence that the endothelial volume-regulated anion channel (VRAC) is also under the control of the caveolar system. When calf pulmonary artery endothelial (CPAE) cells were transfected with caveolin-1 Delta1-81 (deletion of amino acids 1 to 81), activation of VRAC by hypotonic cell swelling was strongly impaired. Concomitantly, caveolin-1 Delta1-81 disturbed the formation of caveolin-1 containing lipid rafts as evidenced by sucrose density gradient centrifugation. In nontransfected cells, endogenous caveolin-1 typically associated with low-density, detergent-resistant lipid rafts. However, transient expression of caveolin-1 Delta1-81 caused a redistribution of endogenous caveolin-1 to high-density, detergent-soluble membrane fractions. We therefore conclude that the interaction between caveolin-1 and detergent-resistant lipid rafts is an important prerequisite for endothelial VRAC activity.  相似文献   

10.
Apoptotic cell death is an essential process in the development of the central nervous system and in the pathogenesis of its degenerative diseases. Efflux of K(+) and Cl(-) ions leads to the shrinkage of the apoptotic cell and facilitates the activation of caspases. Here, we present electrophysiological and immunocytochemical evidences for the activation of a voltage-dependent anion channel (VDAC) in the plasma membrane of neurons undergoing apoptosis. Anti-VDAC antibodies blocked the channel and inhibited the apoptotic process. In nonapoptotic cells, plasma membrane VDAC1 protein can function as a NADH (-ferricyanide) reductase. Opening of VDAC channels in apoptotic cells was associated with an increase in this activity, which was partly blocked by VDAC antibodies. Hence, it appears that there might be a dual role for this protein in the plasma membrane: (1) maintenance of redox homeostasis in normal cells and (2) promotion of anion efflux in apoptotic cells.  相似文献   

11.
In the brain, the astroglial syncytium is crucially involved in the regulation of water homeostasis. Accumulating evidence indicates that a dysregulation of the astrocytic processes controlling water homeostasis has a pathogenetic role in several brain injuries. Here, we have analysed by RNA interference technology the functional interactions occurring between the most abundant water channel in the brain, aquaporin-4 (AQP4), and the swelling-activated Cl(-) current expressed by cultured rat cortical astrocytes. We show that in primary cultured rat cortical astrocytes transfected with control small interfering RNA (siRNA), hypotonic shock promotes an increase in cellular volume accompanied by augmented membrane conductance mediated by volume-regulated anion channels (VRAC). Conversely, astroglia in which AQP4 was knocked down (AQP4 KD) by transfection with AQP4 siRNA changed their morphology from polygonal to process-bearing, and displayed normal cell swelling but reduced VRAC activity. Pharmacological manipulations of actin cytoskeleton in rat astrocytes, and functional analysis in mouse astroglial cells, which retain their morphology upon knockdown of AQP4, suggest that stellation of AQP4 KD rat cortical astrocytes was not causally linked to reduction of VRAC current. Molecular analysis of possible candidates of swelling-activated Cl(-) current provided evidence that in AQP4 KD astrocytes, there was a down-regulation of chloride channel-2 (CIC-2), which, however, was not involved in VRAC conductance. Inclusion of ATP in the intracellular saline restored VRAC activity upon hypotonicity. Collectively, these results support the view that in cultured astroglial cells, plasma membrane proteins involved in cell volume homeostasis are assembled in a functional platform.  相似文献   

12.
The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism.  相似文献   

13.
Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.  相似文献   

14.
Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current decreased in G1 and increased in early S phase, compared to that in G0. The isotonic steady-state current, which seems to be predominantly VRAC, also decreased in G1, and increased again in early S phase, to a level similar to that in G0. In contrast, the maximal CaCC current (500 nM free Ca2+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude.  相似文献   

15.
Voltage-dependent anion channel (VDAC) is a porin known by its role in metabolite transport across mitochondria and participation in apoptotic processes. Although traditionally accepted to be located within mitochondrial outer membrane, some data has also reported its presence at the plasma membrane level where it seems to participate in regulation of normal redox homeostasis and apoptosis. Here, exposure of septal SN56 and hippocampal HT22 cells to specific anti-VDAC antibodies prior to amyloid beta (Abeta) peptide was observed to prevent neurotoxicity. In these cell lines, we identified a VDAC form associated with the plasma membrane that seems to be particularly abundant in caveolae. The two membrane-related isoforms of estrogen receptor alpha (mERalpha) (80 and 67 kDa), known in SN56 cells to participate in estrogen-induced neuroprotection against Abeta injury, were also observed to be present in caveolae. Interestingly, we demonstrated for the first time that both VDAC and mERalpha interact at the plasma membrane of these neurons as well as in microsomal fractions of the corresponding murine septal and hippocampal tissues. These proteins were also shown to associate with caveolin-1, thereby corroborating their presence in caveolar microdomains. Taken together, these results suggest that VDAC-mERalpha association at the plasma membrane level may participate in the modulation of Abeta-induced cell death.  相似文献   

16.
Voltage-dependent anion channel (VDAC), Bax, and tBid play a central role in apoptosis regulation but their functioning is still very controversial. VDAC forms voltage gated pore in planar lipid bilayers, and acts as the pathway for the movement of substances in and out of the mitochondria by passive diffusion. Here we report that there is increase in the pore size of VDAC in the presence of Bax and tBid through bilayer electrophysiological experiments. We hereby hypothesize that this increase in pore size might cause swelling in the mitochondria, leading to the rupture of mitochondrial outer membrane and release of cytochrome c causing brain cell death.  相似文献   

17.
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic members of the Bcl-2 family such as Bax and Bak induce apoptogenic cytochrome c release in isolated mitochondria, whereas BH3-only proteins such as Bid and Bik do not directly target the VDAC to induce cytochrome c release. To investigate the biological significance of the VDAC for apoptosis in mammalian cells, we produced two kinds of anti-VDAC antibodies that inhibited VDAC activity. In isolated mitochondria, these antibodies prevented Bax-induced cytochrome c release and loss of the mitochondrial membrane potential (Deltapsi), but not Bid-induced cytochrome c release. When microinjected into cells, these anti-VDAC antibodies, but not control antibodies, also prevented Bax-induced cytochrome c release and apoptosis, whereas the antibodies did not prevent Bid-induced apoptosis, indicating that the VDAC is essential for Bax-induced, but not Bid-induced, apoptogenic mitochondrial changes and apoptotic cell death. In addition, microinjection of these anti-VDAC antibodies significantly inhibited etoposide-, paclitaxel-, and staurosporine-induced apoptosis. Furthermore, we used these antibodies to show that Bax- and Bak-induced lysis of red blood cells was also mediated by the VDAC on plasma membrane. Taken together, our data provide evidence that the VDAC plays an essential role in apoptogenic cytochrome c release and apoptosis in mammalian cells.  相似文献   

18.
The voltage-dependent anion channel: an essential player in apoptosis   总被引:12,自引:0,他引:12  
Tsujimoto Y  Shimizu S 《Biochimie》2002,84(2-3):187-193
The increase of outer mitochondrial membrane permeability is a central event in apoptotic cell death, since it releases several apoptogenic factors such as cytochrome c into the cytoplasm that activate the downstream destructive processes. The voltage-dependent anion channel (VDAC or mitochondrial porin) plays an essential role in the increase of mitochondrial membrane permeability, and it is regulated by the Bcl-2 family of proteins via direct interaction. Anti-apoptotic Bcl-2 family members close the VDAC, whereas some (but not all) pro-apoptotic members interact with the VDAC to generate a protein-conducting channel through which cytochrome c can pass. Although the VDAC is directly involved in the apoptotic increase of mitochondrial membrane permeability and is known to be a component of the permeability transition pore complex, its role in the regulation of outer membrane permeability can be separated from the occurrence of permeability transition events, such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. The VDAC not only interacts with Bcl-2 family members, but also with other proteins, and probably acts as a convergence point for a variety of life-or-death signals.  相似文献   

19.
In this study, we addressed the presence and location of nucleotide-binding sites in the voltage-dependent anion channel (VDAC). VDAC bound to reactive red 120-agarose, from which it was eluted by ATP, less effectively by ADP and AMP, but not by NADH. The photoreactive ATP analog, benzoyl-benzoyl-ATP (BzATP), was used to identify and characterize the ATP-binding sites in VDAC. [alpha-(32)P]BzATP bound to purified VDAC at two or more binding sites with apparent high and low binding affinities. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of BzATP-labeled VDAC confirmed the binding of at least two BzATP molecules to VDAC. The VDAC BzATP-binding sites showed higher specificity for purine than for pyrimidine nucleotides and higher affinity for negatively charged nucleotide species. VDAC treatment with the lysyl residue modifying reagent, fluorescein 5'-isothiocyanate, markedly inhibited VDAC labeling with BzATP. The VDAC nucleotide-binding sites were localized using chemical and enzymatic cleavage. Digestion of [alpha-(32)P]BzATP-labeled VDAC with CNBr or V8 protease resulted in the appearance of approximately 17- and approximately 14-kDa labeled fragments. Further digestion, high performance liquid chromatography separation, and sequencing of the selected V8 peptides suggested that the labeled fragments originated from two different regions of the VDAC molecule. MALDI-TOF analysis of BzATP-labeled, tryptic VDAC fragments indicated and localized three nucleotide binding sites, two of which were at the N and C termini of VDAC. Thus, the presence of two or more nucleotide-binding sites in VDAC is suggested, and their possible function in the control of VDAC activity, and, thereby, of outer mitochondrial membrane permeability is discussed.  相似文献   

20.
The maxi-anion channel has been observed in many cell types from the very beginning of the patch-clamp era. The channel is highly conductive for chloride and thus can modulate the resting membrane potential and play a role in fluid secretion/absorption and cell volume regulation. A wide nanoscopic pore of the maxi-anion channel permits passage of excitatory amino acids and nucleotides. The channel-mediated release of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression and physiological/pathophysiological significance, the molecular identity of the maxi-anion channel is still obscure. VDAC is primarily a mitochondrial protein; however several groups detected it on the cellular surface. VDAC in lipid bilayers reproduced the most important biophysical properties of the maxi-anion channel, such as a wide nano-sized pore, closure in response to moderately high voltages, ATP-block and ATP-permeability. However, these similarities turned out to be superficial, and the hypothesis of plasmalemmal VDAC as the maxi-anion channel did not withstand the test by genetic manipulations of VDAC protein expression. VDAC on the cellular surface could also function as a ferricyanide reductase or a receptor for plasminogen kringle 5 and for neuroactive steroids. These ideas, as well as the very presence of VDAC on plasmalemma, remain to be scrutinized by genetic manipulations of the VDAC protein expression. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号