首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Viviparity is reported for Gegeneophis seshachari (Gymnophiona: Caeciliidae) from a gravid female containing four oviductal foetuses. The oviducts are highly vascularized and contain patches of thickened, layered tissue similar to foetal gut contents. Gegeneophis seshachari probably resemble other viviparous caecilians in having foetuses that ingest thickened oviduct lining using specialized deciduous teeth. This is the first report of viviparity in Asian amphibians and Indo-Seychellean caeciliids. Gegeneophis is the only caecilian genus known to include oviparous and viviparous species, and G. seshachari is the smallest known viviparous caecilian. Phylogenetic analysis of mitochondrial DNA sequences supports assignment of G. seshachari to a monophyletic Gegeneophis. Character optimization indicates that viviparity has evolved independently at least four times within Gymnophiona--a rate of incidence relative to the number of extant species that is higher than for other vertebrate groups except squamate reptiles. Our findings strengthen the proposal that caecilian reproduction demands further attention.  相似文献   

2.
India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia.  相似文献   

3.
The caecilians, members of the amphibian Order Gymnophiona, are the least known Order of tetrapods, and their intra-relationships, especially within its largest group, the Family Caeciliidae (57% of all caecilian species), remain controversial. We sequenced thirteen complete caecilian mitochondrial genomes, including twelve species of caeciliids, using a universal primer set strategy. These new sequences, together with eight published caecilian mitochondrial genomes, were analyzed by maximum parsimony, partitioned maximum-likelihood and partitioned Bayesian approaches at both nucleotide and amino acid levels, to study the intra-relationships of caecilians. An additional multiple gene dataset including most of the caecilian nucleotide sequences currently available in GenBank produced phylogenetic results that are fully compatible with those based on the mitogenomic data. Our phylogenetic results are summarized as follow. The caecilian family Rhinatrematidae is the sister taxon to all other caecilians. Beyond Rhinatrematidae, a clade comprising the Ichthyophlidae and Uraeotyphlidae is separated from a clade containing all remaining caecilians (Scolecomorphidae, Typhlonectidae and Caeciliidae). Within this large clade, Scolecomorphidae is the sister taxon of Typhlonectidae and Caeciliidae but this placement did not receive strong support in all analyses. Caeciliidae is paraphyletic with regard to Typhlonectidae, and can be divided into three well-supported groups: Caeciliidae group 1 contains the African caeciliids Boulengerula and Herpele; Caeciliidae group 2 contains Caecilia and Oscaecilia and it is the sister taxon of Typhlonectidae; Caeciliidae group 3 comprises the remaining species of caeciliids. The mitochondrial genome data were also used to calculate divergence times for caecilian evolution using the penalized likelihood method implemented in the program R8S. The newly obtained dating results are compatible with (but a little older than) previous time estimates mainly based on nuclear gene data. The mitogenomic time tree of caecilians suggests that the initial diversification of extant caecilians most probably took place in Late Triassic about 228 (195–260) Ma. Caeciliids currently distributed in India and the Seychelles diverged from their African and American relatives most probably in Late Jurassic about 138 (112–165) Ma, fairly close to the time (130 Ma) when Madagascar–India–Seychelles separated from Africa and South America. The split between the Indian caeciliid Gegeneophis and Seychellean caeciliids occurred about 103 (78–125) Ma, predated the rifting of India and the Seychelles (65 Ma).  相似文献   

4.
Few genetic data are currently available to assess patterns of population differentiation and speciation in planktonic taxa that inhabit the open ocean. A phylogenetic study of the oceanic copepod family Eucalanidae was undertaken to develop a model zooplankton taxon in which speciation events can be confidently identified. A global survey of 20 described species (526 individuals) sampled from 88 locations worldwide found high levels of cryptic diversity at the species level. Mitochondrial (16S rRNA, CO1) and nuclear (ITS2) DNA sequence data support 12 new genetic lineages as highly distinct from other populations with which they are currently considered conspecific. Out of these 12, at least four are new species. The circumglobal, boundary current species Rhincalanus nasutus was found to be a cryptic species complex, with genetic divergence between populations unrelated to geographic distance. 'Conspecific' populations of seven species exhibited varying levels of genetic differentiation between Atlantic and Pacific basins, suggesting that continental landmasses form barriers to dispersal for a subset of circumglobal species. A molecular phylogeny of the family based on both mitochondrial (16S rRNA) and nuclear (ITS2, 18S rRNA) gene loci supports monophyly of the family Eucalanidae, all four eucalanid genera and the 'pileatus' and 'subtenuis' species groups.  相似文献   

5.
The Western Ghats mountain range in India is a biodiversity hotspot for a variety of organisms including a large number of endemic freshwater crab species and genera of the family Gecarcinucidae. The phylogenetic relationships of these taxa, however, have remained poorly understood. Here, we present a phylogeny that includes 90% of peninsular Indian genera based on mitochondrial 16S rRNA and nuclear histone H3 gene sequences. The subfamily Gecarcinucinae was found to be paraphyletic with members of two other subfamilies, Liotelphusinae and Parathelphusinae, nesting within. We identify a well‐supported clade consisting of north Indian species and one clade comprising mostly south Indian species that inhabit the southern ‘sky islands’ of the Western Ghats. Relationships of early diverging genera, however, were resolved with low support. This study also includes newly sampled material from an isolated mountain plateau in the northern part of the Western Ghats, representing a new species of Gubernatoriana, which we describe here as Gubernatoriana basalticola sp. n. The new species is immediately distinguished from its congeners and the related genera Ghatiana and Inglethelphusa by its carapace and cheliped morphology, which are unique among Indian freshwater crabs. This study highlights the urgent need for continued faunistic studies to assess the true diversity of gecarcinucid crabs on the Indian subcontinent, to fully understand the basal phylogenetic relationships within the freshwater crab family Gecarcinucidae, and to evaluate the conservation threat status and biogeography of the montane freshwater crabs of the Western Ghats.  相似文献   

6.
Amidst a worldwide decline in amphibian populations, those species endemic to islands remain an important focus for conservation efforts. The Sooglossidae are a family of frog species endemic to the Seychelles islands that are believed to have evolved in isolation for approximately 75 million years. Formerly thought to inhabit just two Seychelles islands (Mahé and Silhouette), a third population was discovered on Praslin in 2009. Phylogenetic analysis based on 438 bp of mitochondrial 16S rRNA suggests that the Praslin population is most closely related to Sooglossus sechellensis from Silhouette, and identifies these as two separate clades which together sit distinct from the population on Mahé. An average of 4.06% uncorrected pairwise sequence divergence between the Praslin and Silhouette populations suggests substantial evolutionary divergence rather than recent introduction. Discriminant function analysis also revealed differences in morphology in frogs from Praslin and Mahé. DNA sequences of two Praslin specimens group more closely with the Mahé population, indicating some shared haplotypes that suggest recent secondary contact. Tests for a genetic signature of recent population expansion on either island were not significant. Our results suggest substantial evolutionary divergence between the three populations of S. sechellensis, most likely following isolation due to changes in sea level in the Indian Ocean. Whilst further genetic sampling and ecological studies are needed, our initial phylogenetic analyses suggest that the sooglossid population on Praslin should be managed as an evolutionarily significant unit to retain the uniqueness of its genetic diversity and its evolutionary trajectory within this ancient family of amphibians.  相似文献   

7.
To study how the population genetic structure in zooplankton respond to environmental conditions, using comparative limnology, the genetic diversity and genetic differentiation of the B. calyciflorus complex collected from four inland lakes in Wuhu City, China were investigated based on the 16S rRNA gene and nuDNA ITS sequences. The results displayed a high genetic diversity, and the nucleotide diversity of the 16S rRNA gene was higher than that of the ITS sequence. The phylogenetic analyses grouped the four populations into two cryptic species (Bc-JT and Bc-FL) with strong support. The two cryptic species were found in lakes with different trophic levels, demonstrating significant ecological specialization. The origins of clone TW12 were not consistent in the phylogenetic trees between two genetic markers, which might be attributed to the effects of male-mediated gene flow on the phylogenetic relationships of rotifers. The nucleotide diversity of the cryptic species Bc-JT was higher than that of Bc-FL, indicating that eutrophication might decrease the genetic diversity of cryptic species. The total phosphorus concentration in water bodies might be the most important factor affecting the genetic diversity of species.  相似文献   

8.
Aim The Mascarene ridged frog, Ptychadena mascareniensis, is the only African amphibian species thought to occur on Madagascar and on the Seychelles and also Mascarene islands. We explored its phylogenetic relationships and intraspecific genetic differentiation to contribute to the understanding of transoceanic dispersal in amphibians. Methods Fragments of the mitochondrial 16S rRNA gene were sequenced from specimens collected over most of the distribution area of P. mascareniensis, including populations from Madagascar, Mascarenes and Seychelles. Results We identified five deeply divergent clades having pairwise divergences >5%, which probably all represent cryptic species in a P. mascareniensis complex. One of these seems to be restricted to Madagascar, the Mascarenes and the Seychelles. Sequences obtained from topotypic material (Réunion) were identical to the most widespread haplotype from Madagascar. The single Mauritian/Seychellean haplotype differed by only one mutation from a Malagasy haplotype. Main conclusions It is likely that the Mascarene and Seychellean populations were introduced from Madagascar by humans. In contrast, the absence of the Malagasy haplotypes from Africa and the distinct divergences among Malagasy populations (16 mutations in one divergent hapolotype from northern Madagascar) suggest that Madagascar was populated by Ptychadena before the arrival of humans c. 2000 years ago. Because Madagascar has been separated from Africa since the Jurassic, this colonization must have taken place by overseas rafting, which may be a more widespread dispersal mode in amphibians than commonly thought.  相似文献   

9.
This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.  相似文献   

10.
Two small endangered populations of Indian wolves were recently shown to be distant from other wolf and dog mtDNA lineages characterized so far. None of the inner branches in the tree of canid species based on partial hypervariable D-loop sequences were, however, statistically supported by the data raising the question whether the two Indian wolf lineages represent two new species, occupying an intermediate position between Canis latrans and C. lupus or have diverged from the sub-species of C. lupus due to isolation and drift. Here we report complete D-loop, cytochrome b, and 16S rRNA sequences data for 23 additional wolves from India analysed in the context of other canid species. Extended analyses of D-loop data and partial sequences of 16S rRNA showed highly reticulated pattern and were unable to resolve unambiguously the phylogenetic relationship of Indian wolves among other canid species. The phylogenetic reconstructions of cytochrome b sequences, however gave significant statistical support for the inner branches supporting genetic distinction of the two Indian wolf lineages within themselves as well as from all other wolves of the world, including individuals belonging to subspecies C. lupus chanco and C. lupus pallipes to which the two Indian wolf populations have been traditionally assigned. Their genetic differentiation relative to worldwide variation of wolves supports the suggestion to treat them as separate wolf species, C. himalayensis and C. indica .  相似文献   

11.
Almost 90% of global bird extinctions have occurred on islands. The loss of endemic species from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th century, many of these parrots have become extinct or have declined in numbers. Alongside the extinction of species, a number of the Indian Ocean islands have experienced colonization by highly invasive parrots, such as the Ring‐necked Parakeet Psittacula krameri. Such extinctions and invasions can, on an evolutionary timescale, drive changes in species composition, genetic diversity and turnover in phylogenetic diversity, all of which can have important impacts on species potential for adaptation to changing environmental and climatic conditions. Using mtDNA cytochrome b data, we resolve the taxonomic placement of three extinct Indian Ocean parrots: the Rodrigues Psittacula exsul, Seychelles Psittacula wardi and Reunion Parakeets Psittacula eques. This case study quantifies how the extinction of these species has resulted in lost historical endemic phylogenetic diversity and reduced levels of species richness, and illustrates how it is being replaced by non‐endemic invasive forms such as the Ring‐necked Parakeet. Finally, we use our phylogenetic framework to identify and recommend a number of phylogenetically appropriate ecological replacements for the extinct parrots. Such replacements may be introduced once invasive forms have been cleared, to rejuvenate ecosystem function and restore lost phylogenetic diversity.  相似文献   

12.
Genetic diversity in the four east Palearctic ground squirrel species of the genus Spermophilus--S. undulatus, S. parryi (subgenus Urocitellus), S. dauricus, and S. relictus (subgenus Citellus)--- was investigated using RAPD PCR with ten random primers. Siberian chipmunk, Tamias sibiricus, was used as an outgroup. Molecular markers for different taxonomic ranks were identified, including those for the genera Spermophilus and Tamias, subgenera Urocitellus and Citellus, as well as for each of the four species, S. undulatus, S. parryi, S. dauricus, and S. relictus. For the ground squirrel species and subgenera, genetic differentiation indices (H(t), H(s), D(st), G(st), Nm, and D) were calculated. In addition, for these groups the NJ phylogenetic reconstructions and UPGMA dendrograms of genetic similarity of the individuals and combined populations were constructed. Comparative molecular genetic analysis revealed a high genetic differentiation between S. undulates, S. dauricus, S. relicts, and S. parryi (G(st) = 0.58 to 0.82; D = 0.53 to 1.06), along with a low level of genetic differentiation of the subgenera Citellus and Urocitellus (G(st) = 0.33; D = 0.27), distinguished in accordance with the existing taxonomic systems of the genus Spermophilus.  相似文献   

13.
Abstract Carex misera is a rare sedge, endemic to rocky outcrops and mountain summits within the southern Appalachian Mountains from northern Georgia to northern North Carolina. We assessed allozyme diversity for 406 individuals from nine populations over most of the geographic range. Twenty-seven putative loci were assayed and eight (30%) were found to be polymorphic. Nei's gene diversity statistics ( H T =0.043, H S =0.019, G ST =0.551) indicated low levels of variation but relatively highly differentiated populations, suggesting little gene flow. Significant deviations from genotypic expectations under Hardy-Weinberg equilibrium, high positive fixation indices, and the existence of small genetic neighborhoods within populations suggest that at least some inbreeding occurs. Cluster analysis of Nei's genetic identity statistics and principal component analysis of allele frequency data showed high similarity among the six southern populations with the two northern populations more differentiated from them and from each other. These results suggest that preservation of the northern populations is necessary to conserve the already low levels of genetic diversity within the species.  相似文献   

14.
Molecular phylogenetic studies have shown that the characters of the reduced shell of the false limpets of the genus Siphonaria Sowerby I, 1823 are highly variable and often insufficient for species delimitation. The taxonomy and distribution of Siphonaria in the Indian Ocean are poorly known. We sampled Siphonaria in the Seychelles Bank to check the occurrence of recorded species using DNA sequences and to study the paths through which Siphonaria species have colonised the Seychelles Bank by reconstructing their phylogenetic relationships. Analyses of a dataset comprising 16 S rRNA gene sequences of 33 specimens from the Seychelles Bank and 300 additional Siphonaria sequences from other regions from GenBank with various methods for species delimitation resulted in 19–102 primary species hypotheses. Assemble Species by Automatic Partitioning provided a conservative estimate of the species number (42) in which several indisputable species were lumped. The results of Automatic Barcode Gap Discovery depended strongly on the assumed prior maximum intraspecific divergence, whereas the tree-based methods Generalised Mixed Yule Coalescent and Poisson Tree Processes resulted in high overestimates. The specimens from the Seychelles Bank represent three clades, belonging to the Siphonaria ‘atra’ group, the Siphonaria ‘normalis’ group and a possibly undescribed species recorded previously only from Hainan. At least two of the three species recorded from the Seychelles Bank came from the east, i.e., from the Coral Triangle in the Indo-Australian Archipelago, the region with the highest marine biodiversity worldwide. A major transport mechanism across the Indian Ocean was probably the South Equatorial Current.  相似文献   

15.
Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have been important in studies of speciation, continental patterns of genetic diversity within and among species have not been elucidated. As a result, this North American clade has been the subject of substantial taxonomic debate. In this study, we examined the phylogenetic relationships among the trilling Pseudacris and tested previously hypothesized scenarios for speciation using 2.4 kb of mitochondrial 12S and 16S rRNA genes from 253 populations. Bayesian phylogenetic analyses, in combination with published morphological and behavioral data, support recognition of at least nine species, including an undescribed species from the south-central United States. Evidence is presented for substantial geographic subdivision within P. brachyphona (northern and southern clades) and P. feriarum (coastal and inland clades). Discordance between morphology/behavior and molecular data in several individuals suggests occasional hybridization between sympatric species. These results require major revision of range limits for several taxa, in particular, P. maculata, P. triseriata, and P. feriarum. Hypothesis tests using parametric bootstrapping strongly reject previously proposed scenarios for speciation in the group. The tests also support recognition of the geographically restricted taxon P. kalmi as a distinct species. Results of this study provide both a firm phylogenetic basis for future studies of speciation in the trilling Pseudacris and a taxonomic framework for conservation efforts.  相似文献   

16.
At present, there is little information on the phylogenetic diversity of microbial species that inhabit the gastrointestinal tracts of wildlife. To increase understanding in this area, we initiated a characterization of the bacterial diversity in the digestive tracts of three wild African ruminant species namely eland (Taurotragus oryx), Thompson's gazelle (Gazella rufifrons) and Grant's gazelle (Gazella granti), together with a domesticated ruminant species, zebu cattle (Bos indicus), and a non-ruminant species, zebra (Equus quagga). Bacterial diversity was analysed by PCR amplification, sequencing and phylogenetic analysis of 16S ribosomal DNA (rDNA) sequences. A total of 252 full-length 16S rDNA sequences averaging 1,500 base pairs (bp) in length, and an additional 27 partial sequences were obtained and subject to phylogenetic analysis. Using a 98% criterion for similarity, all except for one of the sequences were derived from distinct phylotypes. At least 24 distinct operational taxonomic units (OTU's) could be identified, with the majority of these sequences representing hitherto uncharacterized species and genera. The sequences were generally affiliated with four major bacterial phyla, the majority being members of the Firmicutes (low G+C Gram-positives) related to the genera Clostridium and Ruminococcus. By contrast, with earlier studies using 16S rDNA sequences to assess biodiversity in Bos taurus dairy cattle, Gram-negative bacteria in the Bacteroidales (Prevotella-Bacteroides group) were poorly represented. The lack of redundancy in the 16S rDNA dataset from the five African ungulate species, and the presence of novel sequences not previously described from the gastrointestinal tract of any animal species, highlights the level of diversity that exists in these ecosystems and raises the question as to the functional role of these species in the gastrointestinal tract.  相似文献   

17.
The study of Amazonian biodiversity requires detailed knowledge of the phylogenetic relationships of closely related taxa distributed across Amazonia. The Amazonian poison frogs of the genus Dendrobates have undergone many taxonomic revisions, but the phylogenetic relationships within this group remain poorly understood. Most previous classifications were based on morphology and skin toxin analyses, with limited use of DNA sequence data. Using mtDNA sequence data from four gene regions (cytochrome b, cytochrome oxidase I, 16S rRNA, and 12S rRNA), we present a molecular phylogenetic analysis of the evolutionary relationships within a representative group of Amazonian Dendrobates. We use the resulting phylogenetic hypothesis to investigate different biogeographic hypotheses concerning genetic divergence and species diversity in Amazonia. The results of the analysis support the presence of ancient paleogeographic barriers to gene flow between eastern and western Amazonia, and indicate substantial genetic divergence between species found in the northern and southern regions of western Amazonia.  相似文献   

18.
Wang G  Li Q  Zhu P 《Antonie van Leeuwenhoek》2008,93(1-2):163-174
Sponges are well documented to harbor large amounts of microbes. Both culture-dependent and molecular approaches have revealed remarkable bacterial diversity in marine sponges. Fungi are commonly isolated from marine sponges, yet no reports on phylogenetic diversity of sponge-inhabiting fungi exist. In this report, we investigated the phylogenetic diversity of culturable fungi from the Hawaiian alien marine sponges Suberites zeteki and Gelliodes fibrosa. A total of 44 independent isolates were recovered from these two sponge species, representing 7 orders and 22 genera of Ascomycota. The majority (58%) of fungal isolates from S. zeteki resided in the Pleosporales group, while the predominant isolates (52%) from G. fibrosa were members of the Hypocreales group. Though differing in fungal species composition and structure, culturable communities of these two sponges displayed similar phylogenetic diversity. At the genus level, only two genera Penicillium and Trichoderma in the Eurotiales and Hypocreales orders, respectively, were present in both sponge species. The other genera of the fungal isolates were associated with either S. zeteki or G. fibrosa. Some of these fungal genera had been isolated from sponges collected in other marine habitats, but more than half of these genera were identified for the first time in these two marine sponges. Overall, the diversity of culturable fungal communities from these two sponge species is much higher than that observed in studies of marine sponges from other areas. This is the first report of phylogenetic diversity of marine sponge-associated fungi and adds one more dimension to our current understanding of the phylogenetic diversity of sponge-symbiotic microbes.  相似文献   

19.
The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification.  相似文献   

20.
We present a phylogenetic analysis of teiid lizards based on partitioned and combined analyses of 12S and 16S mitochondrial DNA sequences, and morphological and ultrastructural characters. There were some divergences between 12S and 16S cladograms, but phylogenetic analyses of the combined molecular data corroborated the monophyly of Tupinambinae, Teiinae, and "cnemidophorines", with high support values. The total combined analysis (molecules+morphology) produced similar results, with well-supported Teiinae and "cnemidophorines". We present an evolutionary scenario for the evolution of Teiidae, based on molecular dating of evolutionary events using Bayesian methods, ancestral areas analysis, the fossil record, the geographic distribution of genera, and environmental and geologic changes during the Tertiary. According to this scenario, (1) all current teiid genera, except Aspidoscelis, originated in isolation in South America; (2) most teiid genera originated during the Eocene, a period characterized by savanna expansion in South America; and (3) Cnemidophorus originated in South America, after which some populations dispersed to Central America during the Late Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号