首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ca2+ transients and the rate of Ca2+ release (dCaREL/dt) from the sarcoplasmic reticulum (SR) in voltage-clamped, fast-twitch skeletal muscle fibers from the rat were studied with the double Vaseline gap technique and using mag-fura-2 and fura-2 as Ca2+ indicators. Single pulse experiments with different returning potentials showed that Ca2+ removal from the myoplasm is voltage independent. Thus, the myoplasmic Ca2+ removal (dCaREM/dt) was studied by fitting the decaying phase of the Ca2+ transient (Melzer, Ríos & Schneider, 1986) and dCaREL/dt was calculated as the difference between dCa/dt and dCaREM/dt. The fast Ca2+ release decayed as a consequence of Ca2+ inactivation of Ca2+ release. Double pulse experiments showed inactivation of the fast Ca2+ release depending on the prepulse duration. At constant interpulse interval, long prepulses (200 msec) induced greater inactivation of the fast Ca2+ release than shorter depolarizations (20 msec). The correlation (r) between the myoplasmic [Ca2+]i and the inhibited amount of Ca2+ release was 0.98. The [Ca2+]i for 50% inactivation of dCaREL/dt was 0.25 m, and the minimum number of sites occupied by Ca2+ to inactivate the Ca2+ release channel was 3.0. These data support Ca2+ binding and inactivation of SR Ca2+ release.This work was supported by Grant-in-Aid from the American Heart Association (National) and Muscular Dystrophy Association (USA). Part of this work was developed in Dr. Stefani's laboratory at Baylor College of Medicine.  相似文献   

3.
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation–contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation–contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation–contraction coupling.  相似文献   

4.
The functional effects of calmodulin (CaM) on single cardiac sarcoplasmic reticulum Ca(2+) release channels (ryanodine receptors) (RyR2s) were determined in the presence of two endogenous channel effectors, MgATP and reduced glutathione, using the planar lipid bilayer method. Single-channel activities, number of events, and open and close times were determined at varying cytosolic Ca(2+) concentrations. CaM reduced channel open probability at <10 micro M Ca(2+) by decreasing channel events and mean open times and increasing mean close times. At >10 micro M Ca(2+), CaM was less effective in inhibiting RyR2. CaM decreased mean open times but increased channel events, without significantly affecting mean close times. A series of voltage pulses was applied to the bilayer from +50 to -50 mV and from -50 mV to +50 mV to rapidly increase and decrease open channel-mediated sarcoplasmic reticulum lumenal to cytosolic Ca(2+) fluxes. CaM decreased the duration of the open events after the voltage switch from -50 mV to +50 mV. In parallel experiments, a Ca(2+)-insensitive calmodulin mutant was without effect on RyR2 activity. The results are discussed in terms of a possible role of CaM in the termination of cardiac sarcoplasmic reticulum Ca(2+) release.  相似文献   

5.
The action of ryanodine upon sarcoplasmic reticulum (SR) Ca2+ handling is controversial with evidence for both activation and inhibition of SR Ca2+ release. In this study, the role of the intraluminal SR Ca2+ load was probed as a potential regulator of ryanodine-mediated effects upon SR Ca2+ release. Through dual-wavelength spectroscopy of Ca2+:antipyrylazo III difference absorbance, the intraluminal Ca2+ dependence of ryanodine and Ca(2+)-induced Ca2+ release (CICR) from skeletal SR vesicles was examined. Ryanodine addition after initiation of Ca2+ uptake (a) increased the intraluminal Ca2+ sensitivity of CICR and (b) stimulated spontaneous Ca2+ release with a delayed onset. These ryanodine effects were inversely proportional to the intraluminal Ca2+ load. Ryanodine also inhibited subsequent CICR after reaccumulation of Ca2+ released from the initial CICR. These results provide evidence that ryanodine inhibits transitions between low and high affinity Ca2+ binding states of an intraluminal Ca2+ compartment, possibly calsequestrin. Conformational transitions of calsequestrin may be reciprocally coupled to transitions between open and closed states of the Ca2+ release channel.  相似文献   

6.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

7.
The biological activity of nitric oxide (NO) and NO-donors has been extensively investigated yet few studies have examined those of nitroxyl (HNO) species even though both exist in chemical equilibrium but oxidize thiols by different reaction mechanisms: S-nitrosation versus disulfide bond formation. Here, sodium trioxodinitrate (Na2N2O3; Angeli's salt; ANGS) was used as an HNO donor to investigate its effects on skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. At steady-state concentrations of nanomoles/L, HNO induced a rapid Ca2+ release from sarcoplasmic reticulum (SR) vesicles then the reducing agent dithiothreitol (DTT) reversed the oxidation by HNO resulting in Ca2+ re-uptake by SR vesicles. With RyR1 channel proteins reconstituted in planar bilayers, HNO added to the cis-side increased the open probability (Po) from 0.056+/-0.026 to 0.270+/-0.102 (P<0.005, n=4) then DTT (3 mM) reduced Po to 0.096+/-0.040 (P<0.01, n=4). In parallel experiments, the time course of HNO production from ANGS was monitored by EPR and UV spectroscopy and compared with the rate of SR Ca2+ release indicating that picomolar concentrations of HNO triggered SR Ca2+ release. Controls showed that the hydroxyl radical scavenger, phenol did not alter ANGS-induced SR Ca2+ release, indicating that hydroxyl radical production from ANGS did not account for Ca2+ release from the SR. The findings indicate that HNO is a more potent activator of RyR1 than NO and that HNO activation of RyRs may contribute to NO's activation of RyRs and to the therapeutic effects of HNO-releasing prodrugs in heart failure.  相似文献   

8.
Summary

In this work we show that ryanodine binding to junctional sarcoplasmic reticulum (SR) membranes or purified ryanodine receptor (RyR) is inhibited in a time — and concentration-dependent fashion by prior treatment with the carboxyl reagent dicyclohexylcarbodiimide (DCCD). Exposure of the membrane-bound RyR to the water soluble carboxyl reagents 1-ethyl-3 (3-(dimethylamino) propyl carbodiimide (EDC) or N-ethyl-pheny-lisoxazolium-3 -sulfonate (WRK) only slightly affects their ryanodine binding capacity. The amphipathic reagent N-ethoxy cabonyl-2-ethoxy-1, 2-dihydroquinaline (EEDQ) inhibited ryanodine binding at relatively high concentrations. DCCD-modifica-tion of the SR decreased the binding affinities of the RyR for ryanodine and Ca2+ by about 3- and 18-fold, respectively.

The single channel activity of SR membranes modified with DCCD and then incorporated into planar lipid bilayers is very low (5–8%) in comparison to control membranes. Application of DCCD to either the myoplasmic (c/s) or luminal (trans) side of the reconstituted unmodified channels resulted in complete inhibition of their single channel activities. Similar results were obtained with the water soluble reagent WRK applied to the myoplasmic, but not to the luminal side. The DCCD-modified non-active channel is re-activated by addition of ryanodine in the presence of 250üM Ca2+ and is stabilized in a sub-conductance state. With caffeine, ryanodine re-activated the channel in the presence of 100üM of Ca2+. The results suggest that a carboxyl residue(s) in the RyR is involved either in the binding of Ca2+, or in conformational changes that are produced by Ca2+ binding, and are required for the binding of ryanodine and the opening of the Ca2+ release channel.  相似文献   

9.
We have examined ryanodine binding to its receptor (RR) and compared its effect on Ca2+ release to the Ca2+ release triggered by Ca2+ plus ATP, using vesicular fragments of junctional terminal cisternae (JTC) obtained from skeletal muscle. Ryanodine binding is slow (taking hours or days to complete) and is highly temperature (Q10 = 4) and Ca2+ dependent. At equilibrium, the extent of binding increases as the concentration of ryanodine is raised above 10(-9) M, exhibiting negative cooperativity and reaching the stoichiometry of the 560,000-Da RR chains near 10(-5) M ryanodine. The specificity of the high affinity binding is demonstrated by competitive binding of ryanodine analogs. Kinetic studies using rapid filtration show that, in the absence of ryanodine, rapid (k = 15 s-1) release of Ca2+ follows a triggering exposure of loaded JTC vesicles to perfusion media containing Ca2+ plus ATP. Induction of this release has no lag period and displays minimal temperature dependence. In contrast, prolonged exposure of JTC vesicles to low (10(-7) M) ryanodine concentrations changes the JTC to a state permitting slow (k = 1 s-1) release of Ca2+ even in the absence of the Ca2+ plus ATP trigger. Higher (greater than microM) concentrations of ryanodine do not allow any Ca2+ release and prevent even the release normally triggered by Ca2+ plus ATP. Our data suggest that ryanodine binds to the open state of the tetrameric RR, inducing protein conformational changes and altered oligomeric interactions. Binding of the first molecule of ryanodine to one of the four binding sites on the receptor produces a partially closed and low conductance state of the Ca2+ release channel and reduces the ryanodine binding affinity of the remaining sites. Ryanodine occupancy of all four binding sites on the receptor completes closure of the Ca2+ channel and blocks the triggering action of Ca2+ plus ATP. The tetrameric association of the RR chains is demonstrated by crosslinking with bifunctional reagents, generating crosslinked tetramers that retain ryanodine binding and Ca2+ release functions.  相似文献   

10.
A region in the skeletal muscle ryanodine receptor between amino acids 4014 and 4765 was expressed as a trpE fusion protein. Overlay studies revealed that this region bound Ca2+ and ruthenium red, an indicator of Ca(2+)-binding sites. Ca2+ binding was mapped to subregion 13b between amino acids 4246 and 4377, encompassing a predicted high affinity Ca(2+)-binding site, and to subregion 13c between amino acids 4364 and 4529, encompassing two predicted high affinity Ca(2+)-binding sites. Ca2+ binding was then mapped to three shorter sequences, 22(13b1), 36(13c1), and 35(13c2), amino acids long, each encompassing one of the three predicted Ca(2+)-binding sites. Site-directed polyclonal antibodies were raised against these three short sequences and purified on antigen affinity columns. The antibody against sequence 13c2, lying between residues 4478 and 4512, specifically recognized both denatured and native forms of the ryanodine receptor, suggesting that at least part of the 35 amino acid sequence containing the Ca(2+)-binding site is surface-exposed. The affinity purified antibody increased the Ca2+ sensitivity of ryanodine receptor channels incorporated into planar lipid bilayers, resulting in increased open probability and opening time without altering channel conductance. The antibody-activated channel was still modulated by Ca2+, Mg2+, ATP, ryanodine, and ruthenium red. These observations suggest that sequence 13c2 may be involved in Ca(2+)-induced Ca2+ release.  相似文献   

11.
Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca2+-induced Ca2+ release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [3H]ryanodine binding, single-channel recordings, and Ca2+ release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu2442-Pro2477 region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [3H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca2+, Mg2+, and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca2+ release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca2+ release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca2+ handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia. malignant hyperthermia; 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonic acid; domain peptide 4  相似文献   

12.
Puzzled by recent reports of differences in specific ligand binding to muscle Ca2+ channels, we quantitatively compared the flux of Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscle fibers of an amphibian (frog) and a mammal (rat), voltage clamped in a double Vaseline gap chamber. The determinations of release flux were carried out by the "removal" method and by measuring the rate of Ca2+ binding to dyes in large excess over other Ca2+ buffers. To have a more meaningful comparison, the effects of stretching the fibers, of rapid changes in temperature, and of changes in the Ca2+ content of the SR were studied in both species. In both frogs and rats, the release flux had an early peak followed by fast relaxation to a lower sustained release. The peak and steady values of release flux, Rp and Rs, were influenced little by stretching. Rp in frogs was 31 mM/s (SEM = 4, n = 24) and in rats 7 +/- 2 mM/s (n = 12). Rs was 9 +/- 1 and 3 +/- 0.7 mM/s in frogs and rats, respectively. Transverse (T) tubule area, estimated from capacitance measurements and normalized to fiber volume, was greater in rats (0.61 +/- 0.04 microns-1) than in frogs (0.48 +/- 0.04 micron-1), as expected from the greater density of T tubuli. Total Ca in the SR was estimated as 3.4 +/- 0.6 and 1.9 +/- 0.3 mmol/liter myoplasmic water in frogs and rats. With the above figures, the steady release flux per unit area of T tubule was found to be fourfold greater in the frog, and the steady permeability of the junctional SR was about threefold greater. The ratio Rp/Rs was approximately 2 in rats at all voltages, whereas it was greater and steeply voltage dependent in frogs, going through a maximum of 6 at -40 mV, then decaying to approximately 3.5 at high voltage. Both Rp and Rs depended strongly on the temperature, but their ratio, and its voltage dependence, did not. Assuming that the peak of Ca2+ release is contributed by release channels not in contact with voltage sensors, or not under their direct control, the greater ratio in frogs may correspond to the relative excess of Ca2+ release channels over voltage sensors apparent in binding measurements. From the marked differences in voltage dependence of the ratio, as well as consideration of Ca(2+)-induced release models, we derive indications of fundamental differences in control mechanisms between mammalian and amphibian muscle.  相似文献   

13.
In striated muscle contraction is under the tight control of myoplasmic calcium concentration ([Ca2+]i): the elevation in [Ca2+]i and the consequent binding of calcium to troponin C enables, while the decrease in [Ca2+]i prevents the actin-myosin interaction. Calcium ions at rest are stored in the sarcoplasmic reticulum (SR) from which they are rapidly released upon the depolarisation of the sarcolemmal and transverse (T-) tubular membranes of the muscle cell. The protein responsible for this controlled and fast release of calcium is the calcium release channel found in the membrane of the terminal cisternae of the SR. This review focuses on the physiological and pharmacological modulators of the calcium release channel and tries to draw an up-to-date picture of the events that occur between T-tubular depolarisation and the release of calcium from the SR.  相似文献   

14.
Skeletal muscle deficiency in the 3-phosphoinositide (PtdInsP) phosphatase myotubularin (MTM1) causes myotubular myopathy which is associated with severe depression of voltage-activated sarcoplasmic reticulum Ca2+ release through ryanodine receptors. In the present study we aimed at further understanding how Ca2+ release is altered in MTM1-deficient muscle fibers, at rest and during activation. While in wild-type muscle fibers, SR Ca2+ release exhibits fast stereotyped kinetics of activation and decay throughout the voltage range of activation, Ca2+ release in MTM1-deficient muscle fibers exhibits slow and unconventional kinetics at intermediate voltages, suggestive of partial loss of the normal control of ryanodine receptor Ca2+ channel activity. In addition, the diseased muscle fibers at rest exhibit spontaneous elementary Ca2+ release events at a frequency 30 times greater than that of control fibers. Eighty percent of the events have spatiotemporal properties of archetypal Ca2+ sparks while the rest take either the form of lower amplitude, longer duration Ca2+ release events or of a combination thereof. The events occur at preferred locations in the fibers, indicating spatially uneven distribution of the parameters determining spontaneous ryanodine receptor 1 opening. Spatially large Ca2+ release sources were obviously involved in some of these events, suggesting that opening of ryanodine receptors in one cluster can activate opening of ryanodine receptors in a neighboring one. Overall results demonstrate that opening of Ca2+-activated ryanodine receptors is promoted both at rest and during excitation-contraction coupling in MTM1-deficient muscle fibers. Because access to this activation mode is denied to ryanodine receptors in healthy skeletal muscle, this may play an important role in the associated disease situation.  相似文献   

15.
We have cloned cDNAs encoding the rabbit and human forms of the Ca2+ release channel of sarcoplasmic reticulum. The human cDNA encodes a protein of 5032 amino acids, with a molecular weight of 563,584, which is made without an NH2-terminal signal sequence. Amino acid substitutions between rabbit and human sequences were noted in 163 positions and deletions or insertions in eight regions accounted for additional sequence differences between the two proteins. Analysis of the sequence indicates that 10 potential transmembrane sequences in the COOH-terminal fifth of the molecule and two additional, potential transmembrane sequences nearer to the center of the molecule could contribute to the formation of the Ca2+ conducting pore. The remainder of the molecule is hydrophilic and presumably constitutes the cytoplasmic domain of the protein. A 114-120 amino acid motif is repeated four times in the protein, in residues 841-954, 955-1068, 2725-2844, and 2845-2958 and a 16 amino acid part of the motif is repeated twice more in residues 1344-1359 and 1371-1386. Although the channel is modulated by Ca2+, ATP, and calmodulin, no clear high affinity Ca2(+)-binding domain of the EF hand type and no clear high affinity ATP-binding domain were detected in the primary sequence. An acidic sequence in residues 1872-1923 contains 79% glutamate or aspartate residues and this sequence is a potential low affinity Ca2(+)-binding site. Several potential calmodulin-binding sites were observed in the sequence, in the region 2800 to 3050.  相似文献   

16.
M Fill  E Stefani    T E Nelson 《Biophysical journal》1991,59(5):1085-1090
Single sarcoplasmic reticulum (SR) Ca2+ release channels were reconstituted from normal and malignant hyperthermic (MH) human skeletal muscle biopsies (2-5 g samples). Conduction, gating properties, and myoplasmic Ca2+ dependence of human SR Ca2+ release channels were similar to those in other species (rabbit, pig). The MH diagnostic procedure distinguishes three phenotypes (normal, MH-equivocal, and MH-susceptible) on the basis of muscle contracture sensitivity to caffeine and/or halothane. Single channel studies reveal that human MH muscles (both MH phenotypes) contain SR Ca2+ release channels with abnormally greater caffeine sensitivity. Muscles from MH-equivocal and MH-susceptible patients appear to contain channels with the same abnormality. Further, our data (n = 115, 21 channels, 11 patients) reveals that human MH muscles (both phenotypes) may contain two populations of SR Ca2+ release channels, possibly corresponding to normal and abnormal isoforms. Thus, whole cell phenotypic variation (MH-equivocal vs. MH-susceptible) arises in muscles containing channels with similar caffeine sensitivity suggesting that human MH does not arise from a single defect. These results have important ramifications concerning (a) correlation of functional and genetic MH studies, (b) identification of other, yet to be determined, factors which may influence MH expression, and (c) characterization of normal SR Ca2+ release channel function by exploring genetic channel defects.  相似文献   

17.
Ca2+ uptake and Ca2+-dependent ATP hydrolysis of fast skeletal muscle sarcoplasmic reticulum (SR) are strongly inhibited by trifluoperazine (TFP). Inhibition, which is Ca2+-dependent, is 90% with 14 microM TFP and 0.2 microM Ca2+. TFP interacts strongly, in a Ca2+-dependent way, with two SR proteins, calmodulin and the 53,000-dalton glycoprotein. The two proteins were purified by TFP affinity chromatography. The inhibition of SR activity by TFP was correlated with the interaction of the drug with the glycoprotein, rather than with calmodulin. The main effect was a shift of the (Ca2+-Mg2+)-ATPase from a high to a low affinity form. Calmodulin-dependent phosphorylation of three proteins (Mr = 57,000, 35,000, and 20,000) of the SR membrane of fast skeletal muscle was also demonstrated. Phosphorylation of these three proteins plays no role in the regulation of the active Ca2+-uptake reaction.  相似文献   

18.
The sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca(2+) transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca(2+) channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (DeltaH(cal)) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg(2+) or ruthenium red, conditions that close the ryanodine Ca(2+) channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the DeltaH(cal) values of ATP hydrolysis increased significantly. Neither Mg(2+) nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the DeltaH(cal) of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca(2+) channel is opened or closed.  相似文献   

19.
BAY-k 8644, a nifedipine analogue, promotes Ca2+ influx into excitable cells via plasma membrane voltage-sensitive Ca2+ channels. We report here that sarcoplasmic reticulum (SR) Ca2+ release channels are insensitive to BAY-k 8644, as studied in highly purified isolated fractions and in chemically skinned fibers of rabbit skeletal muscle. This result suggests that a subcellular heterogeneity exists among Ca2+ channels, at least with respect to drug-receptor sites. In the course of this study, however we found that BAY-k 8644 reversibly inhibits the SR Ca2+ pump, i.e., it decreases Ca2+ influx into the SR lumen, although at concentrations (IC50 = 3-5 X 10(-5) M) much higher than those effective on voltage-sensitive Ca2+ channels.  相似文献   

20.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号