首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbamate inhibitors (e.g. pyridostigmine bromide) are used as a pre-treatment for the prevention of organophosphorus poisoning. They work by blocking the native function of acetylcholinesterases (AChE) and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for their many undesirable side effects related to the carbamylation of AChE. In this paper, we describe 17 novel bisquaternary compounds and have analysed their effect on AChE inhibition. The newly prepared compounds were evaluated in vitro using both human erythrocyte AChE and human plasmatic butyrylcholinesterase. Their inhibitory ability was expressed as the half maximal inhibitory concentration (IC50) and then compared to the standard carbamate drugs and two AChE reactivators. One of these novel compounds showed promising AChE inhibition in vitro (nM range) and was better than the currently used standards. Additionally, a kinetic assay confirmed the non-competitive inhibition of hAChE by this novel compound. Consequently, the docking results confirmed the apparent π-π or π-cationic interactions with the key amino acid residues of hAChE and the binding of the chosen compound at the enzyme catalytic site.  相似文献   

2.
Reversible inhibitors (e.g., pyridostigmine bromide, neostigmine bromide) of carbamate origin are used in the early treatment of Myasthenia gravis (MG) to block acetylcholinesterase (AChE) native function and conserve efficient amount of acetylcholine for decreasing number of nicotinic receptors. Carbamate inhibitors are known for many undesirable side effects related to the reversible inhibition of AChE. In contrast, this paper describes 20 newly prepared bispyridinium inhibitors of potential concern for MG. Although some compounds from this series have been known before, they were not assayed for cholinesterase inhibition yet.The newly prepared compounds were evaluated in vitro on human erythrocyte AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to standard carbamate drugs. Three compounds presented promising inhibition (in μM range) of both enzymes in vitro similar to the used standards. The novel inhibitors did not present selectivity between AChE and BChE. Two newly prepared compounds were chosen for docking studies and confirmed apparent π–π or π–cationic interactions aside enzyme’s catalytic sites. The kinetics assay confirmed non-competitive inhibition of AChE by two best newly prepared compounds.  相似文献   

3.
Carbamate inhibitors (e.g., pyridostimine bromide) are used as a pre-exposure treatment for the prevention of organophosphorus poisoning. They work by blocking acetylcholinesterase’s (AChE) native function and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for many undesirable side-effects related to the carbamylation of AChE. In this Letter, 19 analogues of SAD-128 were prepared and evaluated as cholinesterase inhibitors. The screening results showed promising inhibitory ability of four compounds better to used standards (pralidoxime, obidoxime, BW284c51, ethopropazine, SAD-128). Four most promising compounds were selected for further molecular docking studies. The SAR was stated from obtained data. The former receptor studies were reported and discussed. The further in vivo studies were recommended in the view of OP pre-exposure treatment.  相似文献   

4.
The treatment of organophosphorus (OP) poisoning consists of the administration of a parasympatholytic agent (e.g., atropine), an anticonvulsant (e.g., diazepam) and an acetylcholinesterase (AChE) reactivator (e.g., obidoxime). The AChE reactivator is the causal treatment of OP exposure, because it cleaves the OP moiety covalently bound to the AChE active site. In this paper, fourteen novel AChE reactivators are described. Their design originated from a former promising compound K027. These compounds were synthesized, evaluated in vitro on human AChE (hAChE) inhibited by tabun, paraoxon, methylparaoxon and DFP and then compared to commercial hAChE reactivators (pralidoxime, HI-6, trimedoxime, obidoxime, methoxime) or previously prepared compounds (K027, K203). Three of these novel compounds showed a promising ability to reactivate hAChE comparable or better than the used standards. Consequently, a molecular docking study was performed for three of these promising novel compounds. The docking results confirmed the apparent influence of π-π or cation-π interactions and hydrogen bonding for reactivator binding within the hAChE active site cleft. The SAR features concerning the non-oxime part of the reactivator molecule are also discussed.  相似文献   

5.
This paper describes the preparation and in vitro evaluation of 18 newly prepared bis-quinolinium inhibitors on human recombinant acetylcholinesterase (AChE) and human plasmatic butyrylcholinesterase (BChE). Their inhibitory (IC50) and was compared to the chosen standards ambenonium dichloride, edrophonium chloride, BW284c51 and ethopropazine hydrochloride. One novel compound was found to be a promising inhibitor of hAChE (in nM range) and was better than edrophonium chloride or BW284c51, but was worse than ambenonium chloride. This compound also showed selectivity towards hAChE and it was confirmed as a non-competitive inhibitor of hAChE by kinetic analysis. A molecular modelling study further confirmed its binding to the peripheral active site of hAChE via apparent π-π or π-cationic interactions.  相似文献   

6.
In a previous paper, presented by P. Bernard et al. [1], an automated docking was performed for stereospecific and quasi-irreversible organophosphorus acetylcholinesterase (AChE) inhibitors. In this study twelve chiral inhibitors, corresponding to six enantiomeric pairs, each with a phosphorus atom as a stereocenter, were docked to the crystal structure of mouse AChE. Then, the automated docking procedure was extended to a series of 35 organophosphorus compounds. The selected bio-active conformations derived from the docking procedure were used to establish a three dimensional model by means of the Comparative Molecular Field Analysis (CoMFA) method. In contrast to the conventional CoMFA studies, the compounds were not fitted to a reference compound but taken in their protein-based alignments derived from the docking study. For validation purposes, the established CoMFA model was then applied to another series of 24 organophosphorus compounds whose AChE inhibitory activity data were measured in different experimental conditions. A good correlation between predicted and experimental activity data shows that the model is robust and can also be extended to AChE inhibitory activity data measured on another acetylcholinesterase and/or at different incubation times and pH level.  相似文献   

7.
The differences in the inhibition activity of organophosphorus agents are a manifestation of different molecular properties of the inhibitors involved in the interaction with the active site of enzyme. We were interested in comparing the inhibition potency of four known synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2, constituting organophosphorus compounds, where R = CCl3 (1), CHCl2 (2), CH2Cl (3) and CF3 (4), and four new ones with the general formula RC(O)NHP(O)(R')2, where R' = morpholine and R = CCl3 (5), CHCl2 (6), CH2Cl (7), CF3 (8), on AChE and BuChE activities. In addition, in vitro activities of all eight compounds on BuChE were determined. Besides, in vivo inhibition potency of compounds 2 and 6, which had the highest inhibition potency among the tested compounds, was studied. The data demonstrated that compound 2 from the compound series 1 to 4 and compound 6 from the compound series 5 to 8 are the most sensitive as AChE and BuChE inhibitors, respectively. Comparing the IC50 values of these compounds, it was clear that the inhibition potency of these compounds for AChE are 2- to 100-fold greater than for BuChE inhibition. Comparison of the kinetics (IC50, Ki, kp, KA and KD) of AChE and BuChE inactivation by these compounds resulted in no significant difference for the measured variables except for compounds 2 and 6, which appeared to be more sensitive to AChE and BuChE by significantly higher kp and Ki values and a lower IC50 value in comparison with the other compounds. The LD50 value of compounds 2 and 6, after oral administration, and the changes of erythrocyte AChE and plasma BuChE activities in albino mice were studied. The in vivo experiments, similar to the in vitro results, showed that compound 2 is a stronger AChE and BuChE inhibitor than the other synthesized carbacylamidophosphates. Furthermore, in this study, the importance of electropositivity of the phosphorus atom, steric hindrance and leaving group specificity were reinforced as important determinants of inhibition activity.  相似文献   

8.
A series of thirty-three alkynyl and β-ketophosphonates were evaluated for their in vitro acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitory activities using Ellman’s spectrophotometric method. None of the examined compounds inhibited AChE activity at tested concentrations while twenty-nine of them showed significant and selective inhibition of BChE with IC50 values between 38.60 µM and 0.04 µM. In addition, structure-activity relationships were discussed. The most effective inhibitors were the dibutyl o-methoxyphenyl alkynylphosphonate 3dc and dibutyl o-methoxyphenyl β-ketophosphonate 4dc. Activities of most potent compounds were also compared with a commercial organophosphorus compound. These results could inspire the design of new inhibitors with stronger activity against BChE.  相似文献   

9.
A series of cyclic acyl guanidine with carbamate moieties have been synthesized and evaluated in vitro for their AChE and BChE inhibitory activities. Structure−activity relationships identified compound 23 as a nanomolar and selective BChE inhibitor, while compound 32 exhibited nanomolar and selective AChE inhibition, selectivity depending on both the structure of the carbamate substituent as well as the position of guanidines-N substitution. The velocity of enzyme carbamoylation was analyzed and showed similar behavior to physostigmine. Phenolic compounds formed after carbamate transfer to the active site of cholinesterases showed additional neuroprotective properties on a hippocampal neuronal cell line (HT-22) after glutamate-induced intracellular reactive oxygen species generation.  相似文献   

10.
Cholinesterases are targets for organophosphorus compounds which are used as pesticides, insecticides, chemical warfare agents and drugs for the treatment of disease such as glaucoma or parasitic infections. Most organophosphorus compounds impart their toxic action via inhibition of cholinesterases by reacting at an essential serine hydroxyl group. The inhibition process depends on the leaving group, stereochemistry and reactivity of the organophosphorus compound. In this study, the inhibitory potency of two isoelectronic and isostructural diaza- and dioxophospholes A (CH3C6H3 O2P(O)Cl) and B (CH3C6H3(NH)2P(O)Cl) against human acetylcholinesterase (hAChE) was examined by spectrophotometric measurements based on Ellman's method. Results indicated that compounds A and B were irreversible inhibitors with IC50 values of 0.48 and 1.54mM, respectively and inactivation constants (k(i)) of 0.0363 and 0.0207min(-1), respectively. The differences in the inhibitory potency of two phosphole compounds is discussed with respect to their structures. In addition, the synthesis and characterization of compound A is discussed.  相似文献   

11.
Laboratory toxicity bioassays using chlorpyrifos (Dursban) confirmed the notion that development of resistance is responsible for widespread failures to control the California red scale, Aonidiella aurantii (Mask.) by applying organophosphorus (OP) compounds in citrus groves in Israel. Higher Vmax values of acetylcholinesterase (AChE) activity (9–13 fold) were measured in resistant strains collected from the field as compared to a susceptible line. No differences were found with respect to Km values using acetylthiocholine iodide as a substrate, or degree of inhibition (expressed by IC50 values) by the OP compounds chlorpyrifos-oxon and paraoxon and the carbamate pirimicarb. We suggest that resistance of the California red scale is caused by excess of AChE molecules able to bind and thus scavenge inhibitory OP compounds. This scavenging mechanism related to AChE may be similar in other insect species where elevated levels of detoxifying esterases were implicated in conferring OP resistance.  相似文献   

12.
Nagabukuro H  Doi T 《Life sciences》2005,77(26):3276-3286
The aim of this study was to compare the effects of TAK-802, a novel acetylcholinesterase (AChE) inhibitor, and carbamate AChE inhibitors on the detrusor smooth muscle contractility in vitro using isometric tension measurements. The effects of drugs on the nicotine-induced contractions and basal tone of the isolated detrusor muscle of the guinea pig were examined. All of the drugs, namely, TAK-802, distigmine, neostigmine and pyridostigmine, enhanced the nicotine-induced contractions of the muscle strips in a concentration-dependent manner. On the other hand, while neostigmine and pyridostigmine markedly increased the basal tone, and distigmine slightly but significantly increased the basal tone, TAK-802 had no influence on the basal tone of the muscle strips at all. However, following co-treatment with tetraisopropyl pyrophosphoramide, a selective butyrylcholinesterase (BuChE) inhibitor, TAK-802 also did increase the basal tone. The increase of the basal tone by all of the above treatments was completely abolished by atropine. These results reveal that while all the four AChE inhibitors enhanced endogenous acetylcholine-induced contractions, their effects on the basal tone were clearly different. The effect of carbamate AChE inhibitors of increasing the basal tone could be partly attributed to their dual inhibition of both AChE and BuChE, because both cholinesterases may play a critical role in maintaining the resting tension of the urinary bladder. TAK-802, however, did not increase the basal tone of the detrusor muscle strips, probably because of its selective inhibitory effect against AChE. The effect of carbamate AChE inhibitors on the basal tone of the detrusor muscle may explain the decrease of bladder compliance observed in our previous study on guinea pigs as well as the deterioration of the bladder-storage function reported with their clinical use.  相似文献   

13.
A novel series of N-benzylpyridinium moiety linked to arylisoxazole ring were designed, synthesized, and evaluated for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Synthesized compounds were classified into two series of 5a-i and 5j-q considering the position of positively charged nitrogen of pyridinium moiety (3- or 4- position, respectively) connected to isoxazole carboxamide group. Among the synthesized compounds, compound 5n from the second series of compounds possessing 2,4-dichloroaryl group connected to isoxazole ring was found to be the most potent AChE inhibitor (IC50 = 5.96 µM) and compound 5j also from the same series of compounds containing phenyl group connected to isoxazole ring demonstrated the most promising inhibitory activity against BChE (IC50 = 0.32 µM). Also, kinetic study demonstrated competitive inhibition mode for both AChE and BChE inhibitory activity. Docking study was also performed for those compounds and desired interactions with those active site amino acid residues were confirmed through hydrogen bonding as well as π-π and π-anion interactions. In addition, the most potent compounds were tested against BACE1 and their neuroprotectivity on Aβ-treated neurotoxicity in PC12 cells which depicted negligible activity. It should be noted that most of the synthesized compounds from both categories 5a-i and 5j-q showed a significant selectivity toward BChE. However, series 5j-q were more active toward AChE than series 5a-i.  相似文献   

14.
The simultaneous use of the repellent DEET, pyridostigmine, and organophosphorus pesticides has been assumed as a potential cause for the Gulf War Illness and combinations have been tested in different animal models. However, human in vitro data on interactions of DEET with other compounds are scarce and provoked the present in vitro study scrutinizing the interactions of DEET, pyridostigmine and pesticides with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE). DEET showed to be a weak and reversible inhibitor of hAChE and hBChE. The IC(50) of DEET was calculated to be 21.7mM DEET for hAChE and 3.2mM DEET for hBChE. The determination of the inhibition kinetics of pyridostigmine, malaoxon and chlorpyrifos oxon with hAChE in the presence of 5mM DEET resulted in a moderate reduction of the inhibition rate constant k(i). The decarbamoylation velocity of pyridostigmine-inhibited hAChE was not affected by DEET. In conclusion, the in vitro investigation of interactions between human cholinesterases, DEET, pyridostigmine, malaoxon and chlorpyrifos oxon showed a weak inhibition of hAChE and hBChE by DEET. The inhibitory potency of the tested cholinesterase inhibitors was not enhanced by DEET and it did not affect the regeneration velocity of pyridostigmine-inhibited AChE. Hence, this in vitro study does not give any evidence of a synergistic effect of the tested compounds on human cholinesterases.  相似文献   

15.
The effects of diisopropylphosphorofluoridate (DFP) and other organophosphorus compounds on the locomotion of rabbit polymorphonuclear leucocytes have been investigated in vitro using time-lapse cinémicrography. Both phosphorylating and non-phosphorylating compounds were observed to inhibit cell locomotion, not only increasing the proportion of stationary cells, but also decreasing the velocity of those cells whose movement continued. This inhibition of locomotion occurred over the same concentration range of organophosphorus compound which was previously found to enhance the effect of leucocidin on the leucocyte. Although the inhibitory effects of low concentrations of organophosphorus compounds were partly reversible, higher concentrations produced effects which continued to increase even after the cells had been returned to normal medium. It is suggested that the supposed effect of organophosphorus compounds on chemotaxis may actually be due to the inhibition of locomotion per se, probably through the detergent properties of these compounds rather than their properties as enzyme inhibitors.  相似文献   

16.
Abstract

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.  相似文献   

17.
The carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychidae), is an economically important and extremely polyphagous herbivorous pest, with the title of “resistance champion” among arthropods. Anticholinesterase insecticides such as organophosphate and carbamate account for more than one-third of global insecticide sales. The non-target toxicity and resistance problem of organophosphate and carbamate have become of growing concern, which may be due to the fact that they target the ubiquitous catalytic serine residue of acetylcholinesterase (AChE) in mammals, birds, and beneficial insects. In this study, the structural differences between T. cinnabarinus AChE and human AChE, at or near the catalytic pocket, were illustrated. From the SPECS chemical lead-compound database, 55 AChE inhibitor candidates were screened for high affinity for T. cinnabarinus AChE, but low affinity for human AChE, using the DOCK 6 and AutoDock Vina software. Three of the fifty-five candidates had inhibitory activity greater than that of the reversible AChE inhibitor eserine, with no observed inhibitory activities against human AChE. Two of the three had toxicity to T. cinnabarinus comparable to that of natural insecticidal pyrethrins. However, their potency is low compared with that of etoxazole, and further work is needed to optimize their potency. The selectivity of the three compounds over human and mite AChE may be due to their interaction with the mite-specific residues, as analyzed by Cyscore. The three compounds are potential lead compounds for development of novel acaricides against T. cinnabarinus with reduced toxicity to non-target species and a low propensity for resistance.  相似文献   

18.
In the current study, forty-four new [3-(2/3/4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl carbamate derivatives were synthesized and evaluated for their ability to inhibit electric eel acetylcholinesterase (EeAChE) and equine butyrylcholinesterase (eqBuChE) enzymes. According to the inhibitory activity results, [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl heptylcarbamate (16c, eqBuChE, IC50 = 12.8 μM; EeAChE, no inhibition at 100 μM) was the most potent eqBuChE inhibitor among the synthesized compounds and was found to be a moderate inhibitor compared to donepezil (eqBuChE, IC50 = 3.25 μM; EeAChE, IC50 = 0.11 μM). Kinetic and molecular docking studies indicated that compounds 16c and 14c (hexylcarbamate derivative, eqBuChE, IC50 = 35 μM; EeAChE, no inhibition at 100 μM) were mixed-type inhibitors which accommodated within the catalytic active site (CAS) and peripheral anionic site (PAS) of hBuChE through stable hydrogen bonding and π-π stacking. Furthermore, it was determined that [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl (4-methylphenyl)carbamate 7c (eqBuChE, IC50 = 34.5 μM; EeAChE, 38.9% inhibition at 100 μM) was the most active derivative against EeAChE and a competitive inhibitor binding to the CAS of hBuChE. As a result, 6-(2-methoxyphenyl)pyridazin-3(2H)-one scaffold is important for the inhibitory activity and compounds 7c, 14c and 16c might be considered as promising lead candidates for the design and development of selective BuChE inhibitors for Alzheimer’s disease treatment.  相似文献   

19.
Inhibition of cholinesterases (ChE) has been widely used as an environmental biomarker of exposure to organophosphates (OP) and carbamate (CB) pesticides. Different ChE isoforms may be present in the same tissue and may present distinct sensitivities towards environmental contaminants. The present work characterises the soluble ChE present in mosquitofish (Gambusia holbrooki) total head homogenates, through the use of different substrates and selective inhibitors of cholinesterasic activity. Furthermore, the effects of sodium dodecylsulphate (SDS) on the enzymatic activity were investigated, both in vivo and in vitro. These results showed that acetylcholinesterase (AChE) seemed to be the predominant form present in head homogenates of G. holbrooki, despite the inhibition by tetraisopropylpyrophosphoramide (iso-OMPA) found at high concentrations. SDS was responsible for in vitro, but not in vivo, inhibitory effects. The in vitro AChE inhibitory effects of SDS was partially prevented by the use of increasing amounts of ethanol, suggesting that the inhibition was induced by an emulsion effect, which may explain the lack of effect in vivo.  相似文献   

20.
A series of isaindigotone derivatives and analogues were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. The synthetic compounds had IC(50) values at micro or nano molar range for cholinesterase inhibition, and some compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE, which were much better than the isaindigotone derivatives previously reported by our group. Most of these compounds showed higher self-induced Aβ aggregation inhibitory activity than a reference compound curcumin. The structure-activity relationship studies revealed that the derivatives with higher inhibition activity on AChE also showed higher selectivity for AChE over BuChE. Compound 6c exhibiting excellent inhibition for both AChE and self-induced Aβ aggregation was further studied using CD, EM, molecular docking and kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号