首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.  相似文献   

2.
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfpnptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hptcre除去。  相似文献   

3.
获得无选择标记转基因植株是进行重复转基因及消除转基因植株中标记基因潜在危害性的关键。实验采用了Ac/Ds转座子系统在水稻(Oryza sativa,L.)中进行无hpt选择标记的转基因。将含有目的基因bar的Ds元件和hpt标记基因置于同一个T-DNA中,通过农杆菌(Agrobacterium tumefaciens)EHAl05介导将Ac-T-DNA及Ds-T-DNA分别转入到不同的水稻植株,再将单拷贝的Ac-T-DNA植株与单拷贝的Ds-T-DNA植株杂交得到同时含有Ac和Ds元件的F1植株,Fl自交产生F2后代,F2植株中转座后的Ds元件与T-DNA独立分离,在总共100株F2水稻植株中筛选得到2株只含有Ds元件插入而无hpt标记基因的转基因水稻植株。结果表明,利用Ac/Ds转座子系统在水稻中获得无选择标记的转基因植株是可行的。  相似文献   

4.
A genetic transformation procedure for Cryptomeria japonica was developed after co-cultivation of embryogenic tissues with the disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the visual reporter gene sgfp and two selectable marker genes, hpt and nptII. We were able to generate eight and three independent transgenic lines per gram of embryogenic tissue after selection on hygromycin and kanamycin medium, respectively. Transgenic plants were regenerated through somatic embryogenesis in 4 lines out of these 11 lines. Green fluorescent protein fluorescence was observed under fluorescent microscopy. Integration of the genes into the genome was confirmed by polymerase chain reaction analysis of embryogenic tissues and Southern blot analysis of regenerated plantlets.  相似文献   

5.
以热研5号柱花草(Stylosanthes guianensis cv.Ryan No.5)为材料,系统地研究了不同选择标记基因NptII,hpt和bar的柱花草转化体系.研究发现柱花草最适合基因转化的外植体是幼苗下胚轴.最佳愈伤组织形成和愈伤组织分化培养基为M S+NAA 1.0m g/L+6B-A4.0m gL/+3%蔗糖,pH6.最适宜外植体生根培养基是MS+N AA0mg/L+3%蔗糖(pH6).Glufosinate选择压力为0.15m g/L,Kanam ycin选择压力为20mg/L,Hygrom ycin选择压力为15m g/L.在以上的优化转化系统中,柱花草幼苗下胚轴分别侵染带NptII,hpt和bar基因的农杆菌(GV 3101)后,可获得30%愈伤组织具有kanamycin抗性,5%愈伤组织具有Hygromycin抗性,50%的愈伤组织具有Glufosinate抗性.  相似文献   

6.
Selectable marker genes are needed for efficient transformation of plants. The present study focused on testing the applicability of green fluorescent protein (GFP) for selecting transgenic Petunia hybrida plants without applying antibiotics or herbicides. Based on a transient gene expression assay, the efficiency of two gfp genes, mGFP-4 and smRS-GFP, was compared. Two days after infiltration of Agrobacterium tumefaciens, GFP expression was recorded in leaf epidermal cells. The intensity of smRS-GFP fluorescence was higher than that of mGFP-4 and easier to distinguish from other unspecific fluorescent signals in Petunia. Transformations using the pMen65smRS-GFP vector, which contained the neomycin phosphotransferase II (nptII) gene, resulted in callus and shoots that visually and clearly expressed detectable GFP levels; in addition, this vector made it possible to exclusively select transformed plants using GFP. The transformation efficiencies achieved by using GFP selection versus combined kanamycin and GFP selection (nptII+GFP) were compared in four Petunia genotypes with a transformation experiment with four replications. In three out of four Petunia cultivars a higher transformation frequency was achieved by using nptII+GFP selection. Southern blot hybridisation revealed single and multiple integrations of smRS-GFP in Petunia. Single copy plants showed intensive expression in all parts of the plants, whereas a higher copy number led to only weak or partial expression of smRS-GFP allowing the visual selection of single copy events. Thus, it is possible to select transgenic Petunia plants based on their GFP expressions without applying antibiotics or herbicides.  相似文献   

7.
The elimination of marker genes after selection is recommended for the commercial use of genetically modified plants. We compared the applicability of the two site-specific recombination systems Cre/lox and Flp/FRT for marker gene elimination in maize plants. The selection marker gene pat surrounded by two identically directed lox or FRT sites was introduced into maize. Sexual crossing with plants harboring the corresponding constitutively expressed recombinase led to the precise and complete excision of the lox-flanked marker gene in the F1 progeny, whereas Flp-mediated recombination of FRT sequences occurred rarely. Further examination of site-specific integration was done by biolistic bombardment of immature embryos harboring only one lox site with a lox.uidA sequence with results indicating directed integration.  相似文献   

8.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic oat ( Avena sativa L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by a rice actin promoter. In vitro shoot meristematic cultures (SMCs) induced from shoot apices of germinating mature seeds of a commercial oat cultivar, Garry, were used as a transformation target. Proliferating SMCs were bombarded with a mixture of plasmids containing the sgfp(S65T) gene and one of three selectable marker genes, phosphinothricin acetyltransferase (bar), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase (nptII). Cultures were selected with bialaphos, hygromycin B and geneticin (G418), respectively, to identify transgenic tissues. From 289 individual explants bombarded with the sgfp(S65T) gene and one of the three selectable marker genes, 23 independent transgenic events were obtained, giving a 8.0% transformation frequency. All 23 transgenic events were regenerable, and 64% produced fertile plants. Strong GFP expression driven by the rice actin promoter was observed in a variety of tissues of the T(0) plants and their progeny in 13 out of 23 independent transgenic lines. Stable GFP expression was observed in T(2) progeny from five independent GFP-expressing lines tested, and homozygous plants from two lines were obtained. Transgene silencing was observed in T(0) plants and their progeny of some transgenic lines.  相似文献   

9.
The kanamycin resistance encoded by the neomycin phosphotransferase II gene (nptII) of transposon Tn5 is widely used in higher plant genetic transformation. The general process of plant transformation using nptII as a selectable marker gene, however, requires selecting kanamycin-resistant plants or tissues in culture. Even with the recently developed vacuum infiltration method for Arabidopsis transformation, the plant culture steps are not completely eliminated in selection for kanamycin-resistant transformants. The herbicide resistance genes, such as bar, which provides resistance to bialaphos, allow Arabidopsis transformation to become a true non-culture procedure. In this report, we assessed the feasibility of applying kanamycin as a spray in selecting for kanamycin-resistant Arabidopsis transformants grown in soil. We find that kanamycin-resistant transformants were effectively selected by spraying soil-grown Arabidopsis seedlings.  相似文献   

10.
Lebedev VG  Dolgov SV 《Genetika》2000,36(6):792-798
The effect of selective agents on the efficiency of Agrobacterium-mediated transformation of pear was shown. The transformation frequency of the pear stock PS no. 217 by a binary vector carrying the nptII gene conferring kanamycin resistance was 0.4 or 3.1%, while the hpt gene for hygromycin resistance used as a selective marker increased transformation frequency to 6.2 (11.5%). In addition, upon selection on hygromycin B, the proportion of pseudotransgenic regenerants considerably decreased. In four transformation experiments, twenty independent clones were recovered, and their transgenic nature was confirmed by PCR, histochemical, and fluorometric analyses of GUS activity. The presence of introns in the coding region of a heterologous gene was shown to influence the efficiency and stability of transgene expression in plant tissues. Fluorometric determination of GUS activity conducted for a period of two years demonstrated a threefold increase in transgene expression in the case that an intron-containing construct was used for transformation. The expression level was rather stable across several years. The transformation procedure developed may be used for successful expression of heterologous genes controlling agronomic characters in pear plants.  相似文献   

11.
Selectable marker genes that usually encode antibiotic or herbicide resistances are widely used for the selection of transgenic plants, but they become unnecessary and undesirable after transformation selection. An important strategy to improve the transgenic plants' biosafety is to eliminate the marker genes after successful selection. In the FLP/frt site-specific system of 2-μm plasmid from Saccharomyces cerevisiae, the FLP enzyme efficiently catalyzes recombination between two directly repeated FLP recombination target (frt) sites, eliminating the sequence between them. By controlled expression of the FLP recombinase and specific allocation of the frt sites within transgenic constructs, the system can be applied to eliminate the marker genes after selection. Through a series of procedures, the plant FLP/frt site-specific recombination system was constructed, which included the frt-containing vector pCAMBIA1300-betA-frt-als-frt and the FLP expression vector pCAMBIA1300-hsp-FLP-hpt. The FLP recombinase gene was introduced into transgenic (betA-frt-als-frt) tobacco plants by re-transformation. In re-transgenic plants, after heat-shock treatment, the marker gene als flanked by two identical orientation frt sites could be excised by the inducible expression of FLP recombinase under the control of hsp promoter. Excision of the als gene was found in 41 % re-transgenic tobacco plants, which indicated that this system could make a great contribution obtaining the marker-free transgenic plants.  相似文献   

12.
Six plasmids carrying a snowdrop lectin (Galanthus nivalis agglutinin, GNA) and one of three selection markers were successfully transferred into two sugarcane cultivars (FN81–745 and Badila) via Agrobacterium-mediated transformation. Agrobacterium strains LBA4404, EHA105 and A281 that harboured a super-binary vector were used for sugarcane transformation. The use of the hygromycin (Hyg) resistance gene (hpt II), phosphinothrincin (PPT) resistance gene (bar) or G418 resistance gene (npt II) as a screenable marker facilitated the initial selection of GNA transgenic sugarcane callus with different efficiencies and helped the rapid segregation of individual transformation events. All the three selective marker genes were controlled by CaMV 35S promoter, while GNA gene was controlled by promoter of RSs-1 (rice sucrose synthase-1) or Ubi (maize ubiquitin). Factors important to successful transformation mediated by Agrobacterium tumefaciens were optimized, which included concentration of A. tumefaciens, medium composition, co-cultivated methods with plant tissue, strain virulence and different selective marker genes. An efficient protocol for sugarcane transformation mediated by A. tumefaciens was established. The GNA gene has been integrated into sugarcane genome as demonstrated by PCR and Southern dot blotting detections. The preliminary results from bioassay demonstrated a significant resistance of the transgenic sugarcane plants to woolly aphid (Ceratovacuna lanigera Zehnther) indicating thus the possibility for obtaining a transgenic sugarcane cultivar with resistance to woolly aphid.  相似文献   

13.
Trait genes are usually introduced into the plant genome together with a marker gene. The last one becomes unnecessary after transgene selection and characterization. One of the strategies to produce transgenic plants free from the selectable marker is based on site-specific recombination. The present study employed the transient Cre-lox system to remove the nptII marker gene from potato. Transient marker gene excision involves introduction of Cre protein in lox-target plants by PVX virus vector followed by plant regeneration. Using optimized experimental conditions, such as particle bombardment infection method and application of P19 silencing suppressor protein, 20-27% of regenerated plants were identified by PCR analysis as marker-free. Based on our comparison of the recombination frequencies observed in this study to the efficiency of other methods to avoid or eliminate marker genes in potato, we suggest that PVX-Cre mediated site-specific excisional recombination is a useful tool to generate potato plants without superfluous transgenic sequences.  相似文献   

14.
Cre/lox系统通过其Cre重组酶对lox序列进行切割和重新连接,介导lox序列发生特异性重组。利用重组报告基因系统Pactin-lox-hpt-lox-gusA,对Cre/lox系统在水稻(Oryza sativa L.)中介导转基因的剔除进行了研究。Pactin-lox-hpt-lox-gusA系统中选择标记hpt基因侧翼含两个同向lox位点,并位于水稻actin1启动子和gusA基因之间。当hpt在Cre酶作用下被剔除时,actin1启动子可以和gusA基因融合在一起从而驱动GUS表达。通过农杆菌介导获得了分别转cre基因、Pactin-lox-hpt-lox-gusA结构和双价抗虫基因lox-hpt-lox-sck-cryIAc结构的水稻。利用有性杂交方法将cre基因导入到转化lox结构的植株中。在4个转Pactin-lox-hpt-lox-gusA T0植株×转cre T0植株所配组合的30个杂交F1植株中,12个植株表达GUS活性,9个表现潮霉素敏感,表明hpt基因被剔除。研究进一步通过Cre/lox介导剔除转双价抗虫sck  cryIAc基因籼稻恢复系明恢86材料基因组中的选择标记hpt基因。在9个转lox-hpt-lox-sck-cryIAc T2代纯合植株×转creT2代纯合植株所配组合的77个杂交F1植株中, 56个植株表现潮霉素敏感。分子分析证实在这些对潮霉素敏感的植株中hpt基因已经被剔除。  相似文献   

15.
The neomycin phosphotransferase (nptII) selection system has proved successful in citrus transformation; however, it may be recommendable to replace it given the pressure exerted against antibiotic-resistance selectable marker genes in transgenic plants. The present work investigates three different selection alternatives, comparing them to nptII selection in two citrus genotypes, Carrizo citrange and Pineapple sweet orange. The first method used the beta-glucuronidase (uidA) reporter marker gene for selection; the second attempted to generate marker-free plants by transforming explants with a multi-auto-transformation (MAT) vector, combining an inducible R/RS-specific recombination system with transgenic-shoot selection through expression of isopentenyl transferase (ipt) and indoleacetamide hydrolase/tryptophan monooxygenase (iaaM/H) marker genes; while the third exploited the phosphomannose isomerase (PMI)/mannose conditional positive selection system. Firstly, GUS screening of all regenerated shoots in kanamycin-free medium gave 4.3% transformation efficiency for both genotypes. Secondly, workable transformation efficiencies were also achieved with the MAT system, 7.2% for citrange and 6.7% for sweet orange. This system affords an additional advantage as it enables selectable marker genes to be used during the in vitro culture phase and later removed from the transgenic plants by inducible recombination and site-specific excision. Thirdly, the highest transformation rates were obtained with the PMI/mannose system, 30% for citrange and 13% for sweet orange, which indicates that this marker is also an excellent candidate for citrus transformation.  相似文献   

16.
hpt与bar基因作为水稻转基因筛选标记的比较研究   总被引:1,自引:0,他引:1  
张春雨  李宏宇  刘斌 《遗传》2012,34(12):1599-1606
标记基因的选择是影响植物遗传转化和转基因后代筛选成败的关键因素。hpt与bar作为两种常用的水稻转化筛选标记被广泛应用于水稻的转化。为比较两者在实际应用中的效果, 文章首先对比了在潮霉素和除草剂(Bialaphos)两种筛选剂下水稻遗传转化的情况。研究表明, hpt基因的转化筛选体系相对于bar基因在转化效率上提高近两倍, 转化周期提前至少10 d, 且插入基因拷贝数更低。随后, 文章分析了利用潮霉素浸种法在田间筛选转基因水稻的可行性, 研究显示当潮霉素浓度大于167 mg/L时, 可以对以水稻品种kitaake为亲本的转基因材料进行有效筛选, 达到常规除草剂的筛选效果。但与除草剂相比较, 潮霉素的田间筛选成本却处于劣势。文章研究和讨论了hpt和bar基因在遗传转化和后代田间筛选中的优缺点, 并提供了一种利用潮霉素浸种法筛选转基因后代阳性植株的手段, 为将来在水稻转基因研究工作中根据实际需求选择合适的遗传转化、筛选体系提供参考。  相似文献   

17.
The proper use of a marker gene in a transformation process is critical for the production of transgenic plants. However, consumer concerns and regulatory requirements raise an objection to the presence of exogenous DNA in transgenic plants, especially antibiotic-resistant genes and promoters derived from viruses. One approach to overcome this problem is the elimination of marker genes from the plant genome by using several site-specific recombination systems. We propose an alternative method to solve this problem using a marker gene exclusively derived from the host plant DNA. We cloned a genomic DNA fragment containing regulatory and coding sequences of acetolactate synthase (ALS) gene from rice, and mutagenized the ALS gene into a herbicide-resistant form. After transfer of this construct to the rice genome, transgenic plants were efficiently selected with a herbicide, bispyribac-sodium salt, which inhibits the activity of wild type ALS. We also analyzed the regulatory feature of the rice ALS gene promoter with the gusA reporter gene and revealed that GUS expression was observed constitutively in aerial parts of rice seedlings and root tips. The marker system consisted exclusively of host plant DNA and enabled efficient selection in a monocot crop plant, rice. The selection system can potentially be applied to generate transgenic plants of other crop species and can be expected to be publicly acceptable.  相似文献   

18.
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.  相似文献   

19.
Cre/lox系统通过其Cre重组酶对lox序列进行切割和重新连接,介导lox序列发生特异性重组.利用重组报告基因系统Pactin-lox-hpt-lox-gusA,对Cre/lox系统在水稻(Oryzasativa L.)中介导转基因的剔除进行了研究.Pactin-lox-hpt-lox-gusA系统中选择标记hpt基因侧翼含两个同向lox位点,并位于水稻actinl启动子和gusA基因之间.当hpt在Cre酶作用下被剔除时,actinl启动子可以和gusA基因融合在一起从而驱动GUS表达.通过农杆菌介导获得了分别转cre基因、Pactin-lox-hpt-lox-gusA结构和双价抗虫基因lox-hpt-lox-sck-cryIAc结构的水稻.利用有性杂交方法将cre基因导入到转化lox结构的植株中.在4个转Pactin-lox-hpt-lox-gusA T0植株×转cre T0植株所配组合的30个杂交F1植株中,12个植株表达GUS活性,9个表现潮霉素敏感,表明hpt基因被剔除.研究进一步通过Cre/lox介导剔除转双价抗虫sck cryIAc基因籼稻恢复系明恢86材料基因组中的选择标记hpt基因.在9个转lox-hpt-lox-sck-cryIAcT2代纯合植株×转creT2代纯合植株所配组合的77个杂交F1植株中,56个植株表现潮霉素敏感.分子分析证实在这些对潮霉素敏感的植株中hpt基因已经被剔除.  相似文献   

20.
Mature seed‐derived callus from an elite Chinese japonica rice (Oryza sativa L.) cv. Eyi 105 was cotransformed with two plasmids, pWRG1515 and pRSSGNA1,containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β‐glucuronidase gene (gusA) and the snow‐drop (Galanthus nivalis) lectin gene (gna) via particle bombardment. After two rounds of selection on hygromycin‐containing medium, resistant callus was transferred to hygromycin‐containing regeneration medium for plant regeneration. Twenty‐six independent transgenic rice plants were regenerated from 152 bombarded calli with a transformation frequency of 17%. Seventy‐three percent of transgenic plants contained all three genes, which was revealed by PCR/Southern blot analysis. Thirteen out of 19 transgenic plants containing the gna gene expressed GNA (68%) at various levels with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parentplants showing 3:1 Mendelian segregation patterns, we identified three independent homozygous lines containing and expressing all three transgenes.Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to the rice brown planthopper (Nilaparvata lugens, BPH) by decreasing BPH survival and overall fecundity, retarding BPH development and reducing BPH feeding.This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis‐based selection, conferred enhanced resistance to BPH, one of the most damaging insect pests in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号