共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar is the primary product of photosynthesis in plant and plays a critical role in regulating plant growth and development. In this study, quantitative trait loci (QTLs) for total soluble sugar, sucrose, and fructose contents in rice grain were identified using a double haploid population derived from a cross between japonica CJ06 and indica TN1. A total of 17 QTLs, including four QTLs for total soluble sugar content, seven QTLs for sucrose content, and six QTLs for fructose content, were detected on chromosome 1, 3, 4, 5, 6, and 8, with the LOD ranges from 2.61 to 3.85. Furthermore, among the determined varieties, we found that the total soluble sugar content in japonica showed higher than that in indica. Comparative genetic analysis showed that starch synthesis related gene is presumably involved in sugar-related metabolic activity in rice grain. 相似文献
2.
Recent progress in the generation of a molecular genetic map and markers for rice has made possible a new phase of mapping individual genes associated with complex traits. This type of analysis is often referred to as quantitative trait locus (QTL) analysis. Increasing numbers of QTL analyses are providing enormous amounts of information about QTLs, such as the numbers of loci involved, their chromosomal locations and gene effects. Clarification of genetic bases of complex traits has a big impact not only on fundamental research on rice plant development, but it also has practical benefits for rice breeding. In this review, we summarize recent progress of QTL analysis of several complex traits in rice. A strategy for positional cloning of genes at QTLs is also discussed. 相似文献
3.
Key message Coordinated association and linkage mapping identified 25 grain quality QTLs in multiple environments, and fine mapping of the Wx locus supports the use of high-density genetic markers in linkage mapping. AbstractThere is a wide range of end-use products made from cereal grains, and these products often demand different grain characteristics. Fortunately, cereal crop species including sorghum [Sorghum bicolor (L.) Moench] contain high phenotypic variation for traits influencing grain quality. Identifying genetic variants underlying this phenotypic variation allows plant breeders to develop genotypes with grain attributes optimized for their intended usage. Multiple sorghum mapping populations were rigorously phenotyped across two environments (SC Coastal Plain and Central TX) in 2 years for five major grain quality traits: amylose, starch, crude protein, crude fat, and gross energy. Coordinated association and linkage mapping revealed several robust QTLs that make prime targets to improve grain quality for food, feed, and fuel products. Although the amylose QTL interval spanned many megabases, the marker with greatest significance was located just 12 kb from waxy (Wx), the primary gene regulating amylose production in cereal grains. This suggests higher resolution mapping in recombinant inbred line (RIL) populations can be obtained when genotyped at a high marker density. The major QTL for crude fat content, identified in both a RIL population and grain sorghum diversity panel, encompassed the DGAT1 locus, a critical gene involved in maize lipid biosynthesis. Another QTL on chromosome 1 was consistently mapped in both RIL populations for multiple grain quality traits including starch, crude protein, and gross energy. Collectively, these genetic regions offer excellent opportunities to manipulate grain composition and set up future studies for gene validation. 相似文献
4.
Rice stripe disease, caused by Rice stripe virus (RSV) and transmitted by the small brown planthopper (Laodelphax striatellus Fallen), is one of the most serious viral diseases of rice in temperate East Asian production regions. Prior quantitative trait loci (QTL) mapping has established that Oryza sativa L. subsp. indica 'IR24' carries positive alleles at the three loci qSTV3, qSTV7, and qSTV11-i. Here, we report an advanced backcross analysis based on three selected chromosome segment substitution lines (CSSLs), each predicted to carry one of these three QTL. Three sets of BC(4)F(2:3) populations were bred from a cross between the critical CSSL and its recurrent parent Oryza sativa L. subsp. japonica 'Asominori'. Both qSTV3 and qSTV11-i were detected in their respective population, but qSTV7 was not. An allelic analysis based on a known carrier of the major RSV resistance gene Stvb-i, which is located on chromosome 11, showed that qSTV11-i was not allelic with Stvb-i. A large mapping population was used to delimit the location of qSTV11-i to a 73.6-kb region. The de novo markers developed for this purpose will be useful as marker-assisted selection tools in efforts to introduce qSTV11-i into breeding programmes aiming to improve the level of RSV resistance. 相似文献
5.
The inheritance of grain quality is more complicated than that of other agronomic traits in cereals due to epistasis, maternal
and cytoplasmic effects, and the triploid nature of endosperm. In the present study, an established rice DH population derived
from anther culture of an indica/japonica hybrid was used for genetic analysis of rice grain quality. A total of five parameters, amylose content (AC), alkali-spreading
score (ASS), gel consistency (GC), percentage of grain with a white core (PGWC) and the square of the white core (SWC), were
estimated for the DH lines and the parent varieties. For each parent, the value of each parameter was relatively stable in
three locations, Beijing, Hangzhou and Chengdu, while the differences between the parents were significant for all five parameters.
AC showed a bimodal distribution, and the distribution of ASS was skewed toward the value of JX17, while the other three parameters
displayed continuous distributions among the DH lines with partially transgressive segregations. For AC, a minor and a major
gene were found on chromosomes 5 and 6 respectively. The major gene, which should be an allele of wx, explained 91.9% of the total variation. For GC, two QTLs were identified on chromosomes 2 and 7 respectively. For ASS, a
minor and a major gene were both located on chromosome 6. The major gene should be the same locus as the alkali degeneration
gene ( alk). Genetic linkage between alk and wx was found in QTL mapping. For PGWC, two QTLs were located on chromosomes 8 and 12. Only a minor QTL was found for SWC on
chromosome 3. The results and the molecular markers presented here may be useful in rice breeding for grain quality improvement.
Received: 24 April 1998 / Accepted: 13 August 1998 相似文献
7.
seedling-vigor is important for crop establishment. There have been reported quantitative trait locus (QTL) analyses on seedling-vigor related morphological traits. However, physiological understanding of these detected QTLs is rather limited. In this study, we employed a recombinant inbred population to detect QTLs for seedling-vigor traits and physiological traits related to seedling-vigor. Germination rate and seedling growth were measured to quantify seedling-vigor. Total amylase activity, !-amylase activity, reducing sugar content, root activity and seed weight were determined. Correlations were observed between the seedling-vigor and physiological traits. QTL analysis reveals that the intervals of RG393-C1087-RZ403 on chromosome 3, C246-RM26-C1447 and R830-R3166-RG360-C734b on chromosome 5, and the interval of Waxy on chromosome 6 are the four main chromosomal regions controlling seedling-vigor. Several QTLs for amylase activities, reducing sugar content and root activity were localized in the similar regions as the QTLs for seedling-vigor. The results suggest that these traits were under the control of pleiotropic and/or closely linked QTLs. The implications of the results in the understanding of the physiological basis of seedling-vigor were discussed. 相似文献
8.
To understand the genetic basis of yield-related traits of rice, we developed 39 chromosome segment substitution lines (CSSLs)
from a cross between an average-yielding japonica cultivar, Sasanishiki, as the recurrent parent and a high-yielding indica
cultivar, Habataki, as the donor. Five morphological components of panicle architecture in the CSSLs were evaluated in 2 years,
and 38 quantitative trait loci (QTLs) distributed on 11 chromosomes were detected. The additive effect of each QTL was relatively
small, suggesting that none of the QTLs could explain much of the phenotypic difference in sink size between Sasanishiki and
Habataki. We developed nearly isogenic lines for two major QTLs, qSBN1 (for secondary branch number on chromosome 1) and qPBN6 (for primary branch number on chromosome 6), and a line containing both. Phenotypic analysis of these lines revealed that
qSBN1 and qPBN6 contributed independently to sink size and that the combined line produced more spikelets. This suggests that the cumulative
effects of QTLs distributed throughout the genome form the major genetic basis of panicle architecture in rice.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
T. Ando and T. Yamamoto contributed equally to this work. 相似文献
9.
A recombinant inbred line population derived from a cross between Zhenshan 97 and Delong 208 was used to analyze the genetic basis of the cooking and eating quality of rice as reflected by 17 traits (or parameters). These traits include amylose content (AC), gel consistency (GC), alkali spreading value (ASV), cooked rice elongation (CRE), and 13 parameters from the viscosity profile. All the traits, except peak paste viscosity (PKV), time needed from gelatinization to peak (BAtime), and CRE, can be divided into two classes according to their interrelationship. The first class consists of AC, GC, and most of the paste viscosity parameters that form a major determinant of eating quality. The second class includes ASV, pasting temperature (Atemp) and pasting time (Atime), which characterize cooking process. We identified 26 QTL (quantitative trait locus or loci) in 2 years; nine QTL clusters emerged. The two major clusters, which correspond to the Wx and Alk loci, control the traits in the first and second classes, respectively. Some QTL are co-located for the traits belonging to the same class and also for the traits to a different class. The Wx locus also affects on ASV while the Alk locus also makes minor contributions to GC and some paste viscosity parameters. The QTL clusters on other chromosomes are similar to the Wx locus or Alk locus, although the variations they explained are relatively minor. QTL for CRE and PKV are dispersed and independent of the Wx locus. Low paste viscosity corresponds to low AC and soft gel, which represents good eating quality for most Chinese consumers; high ASV and low Atemp, together with reduced time to gelatinization and PKV, indicate preferred cooking quality. The genetic basis of Atemp, Atime, BAtime, peak temperature, peak time, paste viscosity at 95 degrees C, and final paste viscosity is newly examined to reveal a complete and dynamic viscosity profile. 相似文献
11.
Validation of marker-QTL association for genes grain size 3 ( GS3), grain weight 2 ( GW2), seed width 5 ( qSW5) and a QTL qgrl7. 1 for grain length was undertaken in a set of 242 diverse rice germplasm. Further, the study was extended to an F 2 mapping population derived from cross of Sonasal, a short grain aromatic rice landrace with Pusa Basmati 1121, a variety with extra long slender grains. Seven gene specific markers, namely, SF28, SR17, RGS1and RGS2 based on GS3, W004 for GW2, MS40671 for qSW5 and RM505 for qgrl7.1, were used for validation. Single marker analysis revealed significant association of these markers to grain size and shape. The marker SF28 explained highest phenotypic variance (37 %) while the marker W004 explained lowest variance (2.6 %) for grain length in the germplasm set at the significance level P?<?0.05. Three markers namely, SF28, MS40671 and RM505 were polymorphic between the parents Sonasal and Pusa Basmati 1121. In the F 2 population, the marker SF28 linked to gene GS3 explained highest phenotypic variance (32.5 %), while RM505 linked to qgrl7.1 explained 5.4 % of phenotypic variance for grain length. The marker SF28 was found to be most robust in the validation studies both in germplasm and F 2 population. The validated gene specific markers can be utilised in marker assisted selection for improving grain size and shape as these traits have significant contribution towards grain quality and grain yield. This is the first study on validation of gene based markers for grain dimension traits in Indian rice germplasm. 相似文献
12.
Heading time (HT, days from sowing to heading) is an important agronomic trait in rice. Physiologically, HT can be divided
into two stages: vegetative growth time (VGT) and reproductive growth time (RGT). A number of studies for mapping QTLs conferring
HT in rice have been reported, but none of them has tried to map HT-related QTLs based on their component traits (VGT and
RGT). The present study aims to map HT-related QTLs in rice according not only to the performance of HT, but also the performances
of VGT and RGT. A method based on an empirical equation of leaf age growth was developed to partition HT into VGT and RGT.
An indica/japonica DH population and a corresponding RFLP map were constructed for the study. The methods of composite interval mapping and
multiple-trait composite interval mapping were used to map QTLs. A total of 19 QTLs were mapped on all 12 rice chromosomes
with the exception of chromosomes 1 and 4. Results showed that: (1) more QTLs could be detected by partitioning HT into VGT
and RGT; (2) the genetic variation of HT was largely attributed to VGT; and (3) the two component stages were relatively independent
in terms of QTL effects, suggesting that the ratio between VGT and RGT could be genetically adjusted without apparently altering
HT.
Received: 1 June 2000 / Accepted: 16 October 2000 相似文献
13.
Brassica oleracea comprises several important subspecies, including cabbage, broccoli, cauliflower, Chinese kale, and kohlrabi. The petal color of Chinese kale is mostly white and sometimes yellow. To explore the genetic basis of petal color variation in Chinese kale, F2 and BC1 (backcross) populations were constructed from the cross of two inbred lines, 2114 (yellow petal) and 2116 (white petal). Genetic analysis of the F2 and BC1 populations demonstrated that yellow petal color was controlled by a single recessive nuclear gene, termed cpc-2. Insertion-deletion (InDel) markers, designed based on the parental resequencing data, were used to map cpc-2. The fine mapping results indicated that the cpc-2 gene was located in a 569-kb interval on chromosome C03 flanked by InDel markers ZB636 and ZB692, with genetic distances of 0.3 cM and 0.6 cM, respectively. By analyzing the nucleotide variations and annotations of the genes in this interval, a CCD4 family gene was predicted to be a candidate for cpc-2 and renamed BoCCD4.2. In addition, insertion of the CACTA-like transposable element (TE3) interrupted the function of the BoCCD4 gene, which may have resulted in the loss of function of BoCCD4 and the petal color transition from white to yellow. The TE3 insertion in the BoCCD4 gene was also present in 63 cabbage inbred lines among 159 accessions, which revealed that the TE3-type null allele of BoCCD4 formed before the divergence of the two subspecies cabbage and Chinese kale and that Chinese kale evolved much earlier than cabbage. This study lays the foundation for cloning BoCCD4.2 and revealing the molecular mechanism underlying petal color formation in Chinese kale. 相似文献
14.
利用开放式空气CO2浓度增高(FACE)系统平台。研究大田栽培条件下粳稻武香粳14号稻米品质性状对CO2浓度增高200μmol·mol^-1的响应。结果表明.FACE处理稻谷的出糙率平均比CK高1.4个百分点,整精米率平均比CK低12.3个百分点,较低的供N水平有利于提高FACE条件下的出糙率.较高的供N水平有利于提高FACE条件下的整精米率;FACE处理的稻米垩白略有增加。垩白粒率平均比CK高11.9个百分点,垩白度平均比CK平均高2.8个百分点,较高的供N和供P水平有利于降低FACE条件下垩白大小、垩白粒率和垩白度;FACE处理稻米糊化温度平均比CK平均高0.52℃,胶稠度有提高的趋势,但对稻米直链淀粉含量影响较小,较高的供N和供P水平有利于降低FACE条件下稻米的直链淀粉含量,较低的供N和较高的供P水平有利于降低FACE条件下稻米胶稠度,较低的供N水平有利于降低FACE条件下稻米糊化温度;FACE处理使稻米蛋白质含量比CK平均低0.6个百分点,较低的供N和供P水平有利于降低FACE条件下稻米蛋白质含量。 相似文献
15.
Japanese rice ( Oryza sativa L.) cultivars that are strictly used for the brewing of sake (Japanese rice wine) represent a unique and traditional group. These cultivars are characterized by common traits such as large grain size with low protein content and a large, central white-core structure. To understand the genetic diversity and phylogenetic characteristics of sake-brewing rice, we performed amplified fragment length polymorphism and simple sequence repeat analyses, using 95 cultivars of local and modern sake-brewing rice together with 76 cultivars of local and modern cooking rice. Our analysis of both nuclear and chloroplast genome polymorphisms showed that the genetic diversity in sake-brewing rice cultivars was much smaller than the diversity found in cooking rice cultivars. Interestingly, the genetic diversity within the modern sake-brewing cultivars was about twofold higher than the diversity within the local sake-brewing cultivars, which was in contrast to the cooking cultivars. This is most likely due to introgression of the modern cooking cultivars into the modern sake-brewing cultivars through breeding practices. Cluster analysis and chloroplast haplotype analysis suggested that the local sake-brewing cultivars originated monophyletically in the western regions of Japan. Analysis of variance tests showed that several markers were significantly associated with sake-brewing traits, particularly with the large white-core structure. 相似文献
16.
Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops. 相似文献
17.
Summary Genetic control of tiller number, grain number, grain weight, harvest index and grain yield in six generations, along with the biparentals, F 3s, F 2xparental progeny, and F 2xF 1 progeny were investigated in an intervarietal cross of bread wheat involving two highly competitive varieties, WL711 and HD 2009. The performance of F 1, B 1, B 2, F 2, × p 1, F 2 × P 2 and F 2 × F 1 progeny was midway between the parents involved with respect to all the evaluated characters. The biparental progeny excelled the mean performance of their corresponding F 2 and F 3 progeny in tiller number, seed weight and grain yield. The estimates of variance components obtained from the two models deployed were almost similar. Considerable additive genetic variance was observed for grains per spike, seed weight and grain yield while dominance variance was more pronounced for harvest index. The additive-dominance model was adequate for grains per spike and harvest index. Epistatic effects of additive × additive and additive × dominance type for tiller number and grain yield, and of additive × dominance type for seed weight were observed. The digenic epistatic model was inadequate for explaining the nature of gene action for tiller number, seed weight and grain yield. The studies indicated that non-allelic interactions should not be ignored in formulating wheat breeding programmes and that a biparental approach could be adopted as an extremely useful tool for enhancing genetic variability and the creation of transgressive segregants. The usefulness of breeding methodologies utilising a biparental approach is discussed. 相似文献
19.
Rice blast is one of the major fungal diseases that badly reduce rice production in Asia including Malaysia. There is not much information on identification of QTLs as well as linked markers and their association with blast resistance within local rice cultivars. In order to understanding of the genetic control of blast in the F 3 families from indica rice cross Pongsu seribu2/Mahsuri, an analysis of quantitative trait loci against one of the highly virulent Malaysian rice blast isolate Magnaporthe oryzae, P5.0 was carried out. Result indicated that partial resistance to this pathotype observed in the present study was controlled by multiple loci or different QTLs. In QTL analysis in F 3 progeny fifteen QTLs on chromosomes 1, 2, 3, 5, 6, 11 and 12 for resistance to blast nursery tests was identified. Three of detected QTLs (qRBr-6.1, qRBr-11.4, and qRBr-12.1) had significant threshold (LOD >3) and approved by both IM and CIM methods. Twelve suggestive QTLs, qRBr-1.2, qRBr-2.1, qRBr-4.1, qRBr-5.1, qRBr-6.2, qRBr-6.3, qRBr-8.1, qRBr-10.1, qRBr-10.2, qRBr-11.1, qRBr-11.2 and qRBr-11.3) with Logarithmic of Odds (LOD) <3.0 or LRS <15) were distributed on chromosomes 1, 2, 4, 5, 6, 8, 10, and 11. Most of the QTLs detected using single isolate had the resistant alleles from Pongsu seribu 2 which involved in the resistance in the greenhouse. We found that QTLs detected for deferent traits for the using isolate were frequently located in similar genomic regions. Inheritance study showed among F 3 lines resistance segregated in the expected ratio of 15: 1 for resistant to susceptible. The average score for blast resistance measured in the green house was 3.15, 1.98 and 29.95 % for three traits, BLD, BLT and % DLA, respectively. 相似文献
20.
A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions. 相似文献
|