首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allometric models are important for quantifying biomass and carbon storage in terrestrial ecosystems. Generalized allometry exists for tropical trees, but species‐ and site‐specific models are more accurate. We developed species‐specific models to predict aboveground biomass in two of the most ubiquitous natives in Hawaiian forests and shrublands, Metrosideros polymorpha and Dodonaea viscosa. The utility of the M. polymorpha allometry for predicting biomass across a range of sites was explored by comparing size structure (diameter at breast height vs. tree height) of the trees used to develop the models against trees from four M. polymorpha‐dominated forests along a precipitation gradient (1630–2380 mm). We also compared individual tree biomass estimated with the M. polymorpha model against existing generalized equations, and the D. viscosa model with an existing species‐specific model. Our models were highly significant and displayed minimal bias. Metrosideros polymorpha size structures from the three highest precipitation sites fell well within the 95% confidence intervals for the harvested trees, indicating that the models are applicable at these sites. However, size structure in the area with the lowest precipitation differed from those in the higher rainfall sites, emphasizing that care should be taken in applying the models too widely. Existing generalized allometry differed from the M. polymorpha model by up to 88 percent, particularly at the extremes of the data range examined, underestimating biomass in small trees and overestimating in large trees. The existing D. viscosa model underestimated biomass across all sizes by a mean of 43 percent compared to our model. The species‐specific models presented here should enable more accurate estimates of biomass and carbon sequestration in Hawaiian forests and shrublands.  相似文献   

2.
Variability in biomass yield among 13 varieties of Populus hybrids was examined during a 7-year rotation in a network of 4 field trials in Michigan, USA. Seventh-year yield varied by site, averaging from 15.1 Mg ha?1 in the north to 35.2 Mg ha?1 in the south. Yield varied among varieties, ranging from 3.0 Mg ha?1 for DN70 in the north to 52.9 Mg ha?1 for NM2 in the south. Yield was most strongly correlated with growing season temperatures and rainfall but less with edaphic factors throughout the network. Twenty-eight percent of the total variation in individual tree weight was due to location effects and another 28% was due to genetic factors, including strong genotype by environment interactions. Even though each 64-tree plot comprised genetically identical clones, the remaining 44% of total observed variation among trees occurred within these plots. Five varieties that performed well throughout the network were identified as an elite cohort for general commercial use throughout the region. This cohort yielded as much as 50% more biomass than random selections. Certain varieties did well at one location while not at others because of strong genotype by environment interactions. Locally chosen elite cohorts produced as much as 5% more biomass than the regional elite cohort. Varietal ranking did change over time but it was possible to reliably identify the regional cohort after 3 years and local cohorts after 4 years. Local, long-term testing of Populus hybrids will be necessary to optimize commercial biomass yields and thereby maximize financial returns to growers.  相似文献   

3.
与杨树木材密度、纤维性状相关的SSR分子标记   总被引:9,自引:0,他引:9  
通过对美洲黑杨 (Populusdeltoides)×青杨 (P .cathayana)的 68个F2 、双亲及其 4个F1无性系田间随机区组设计 ,5次重复 ,分析了与木材材性有关的木材密度、纤维长、纤维宽以及微纤丝角等性状。结果表明 :纤维长有明显的杂种优势 ,控制该性状表现的基因之间具有正效应的互作 ;控制木材基本密度的基因之间具有负效应的互作。结合SSR分子标记结果 ,采用单因素方差分析法进行标记与性状的相关分析 ,共找到与木材密度、纤维长、纤维宽以及微纤丝角相关联的标记分别为 5、7、4、2个 ;青杨在这 4个材性性状方面也具有对性状起贡献的标记 ,如与木材密度相关的PMGC2 873 1(贡献率 4 88% )标记 ,与纤维长相关的PMGC456 3 (贡献率 2 2 96% )、PMGC2 70 2 2 (贡献率9 17% )标记 ,与纤维宽相关的PMGC2 40 8 1(贡献率 7 18% )标记 ,与微纤丝角相关PMGC2 52 5 1(贡献率 16 59% )标记 ,在育种中如果能正确加以利用 ,也可起到一定的材性改良作用  相似文献   

4.
Allometric equations for the estimation of tree volume and aboveground biomass in a tropical humid forest were developed based on direct measurements of 19 individuals of seven tree species in Northern Costa Rica. The volume and the biomass of the stems represented about two‐thirds of the total volume and total aboveground biomass, respectively. The average stem volume varied between 4 and 11 Mg/tree and the average total aboveground biomass ranged from 4 to 10 mg/tree. The mean specific gravity of the sampled trees was 0.62 ± 0.06 (g/cm3). The average biomass expansion factor was 1.6 ± 0.2. The best‐fit equations for stem and total volume were of logarithmic form, with diameter at breast height (R2= 0.66 ? 0.81) as an independent variable. The best‐fit equations for total aboveground biomass that were based on combinations of diameter at breast height, and total and commercial height as independent variables had R2 values between 0.77 and 0.87. Models recommended for estimating total aboveground biomass are based on diameter at breast height, because the simplicity of these models is advantageous. This variable is easy to measure accurately in the field and is the most common variable recorded in forest inventories. Two widely used models in literature tend to underestimate aboveground biomass in large trees. In contrast, the models developed in this study accurately estimate the total aboveground biomass in these trees.  相似文献   

5.
The aboveground wood biomass (AWB) of tropical forests plays an important role in the global carbon cycle, and local AWB estimates provide essential data that enable the extrapolation of biomass stocks to ecosystem or biome-wide carbon cycle modelling. Few AWB estimates exist in Neotropical freshwater floodplains, where tree species distribution and forest structure depend on the height and duration of periodic inundations. We investigated tree species composition, forest structure, wood specific gravity, and AWB of trees ≥10 cm dbh in 16 plots totalling an area of 1 ha in a seasonally inundated riparian forest of the lower Miranda River, southern Pantanal, Brazil. The 443 tree individuals belonged to 46 species. Four species (Inga vera, Ocotea suaveolens, Tabebuia heptaphylla and Cecropia pachystachya) comprised more than 50% of the Total Importance Values (TIV), and floristic similarities between the plots averaged 38%. Although we detected an overall increase in species diversity correlated with decreasing flood levels, the most important tree species had almost identical distribution patterns along the flooding gradient. The stand basal area per plot (±?s.d.) amounted to 3.0?±?1.1 m2 (47.8?±?18.1 m2/ha), and the tree heights averaged 10.9?±?1.4 m. Multiplying the individual basal areas by individual tree heights and a form factor of 0.6, we estimated the aboveground wood volume (AWV) for each individual, and for each plot (24.4?±?11.7 m3, 391.1?±?188 m3/ha). Wood specific gravity (SG) varied between 0.39 g/cm3 (Cecropia pachystachya) and 0.87 g/cm3 (Tabebuia heptaphylla), with a stand level average of 0.63?±?0.12 g/cm3. Multiplying the individual AWV with species SG, we estimated the plot AWB to be 16.2?±?6.4 Mg (259.4?±?102 Mg/ha). This value is comparable to that reported for late-successional forest stands of Amazonian floodplain forests, and it is close to the worldwide tropical average AWB. Because tree heights in the present forest were comparatively low when compared to other Neotropical forests, we found that resprouting of stems accounted for comparatively high basal areas. We argue that stem resprouting is an adaptation of tree species originating in non-flooded Cerrado to the seasonal inundations of riparian forests.  相似文献   

6.
Hybrid poplars have demonstrated high biomass productivity in the North Central USA as short rotation woody crops (SRWCs). However, our ability to quantitatively predict productivity for sites that are not currently in SRWCs is limited. As a result, stakeholders are also limited in their ability to evaluate different areas within the region as potential supply sheds for wood-based bioenergy facilities. A reliable method for predicting productivity across the region is needed; preferably, such a method will also lend itself to generating yield maps that stakeholders can use to inform their decision making. In this study, the Physiological Processes Predicting Growth model was (1) assigned parameters for hybrid poplars using species-specific physiological data and allometric relationships from previously-published studies, (2) calibrated for the North Central region using previously-published biomass data from eight plantations along with site-specific climate and soils data, (3) validated against previously published biomass data from four other plantations using linear regression of actual versus predicted total aboveground dry biomass (R 2?=?0.89, RMSE?=?8.1 Mg?ha?1, mean bias?=?5.3 Mg?ha?1), (4) evaluated for sensitivity of the model to manipulation of the parameter for age at full canopy cover (fullCanAge) and the fertility rating growth modifier, and (5) combined with soil and climate data layers to produce a map of predicted biomass productivity for the states of Minnesota and Wisconsin. Mean annual biomass productivity (total aboveground dry biomass divided by age) ranged from 4.4 to 13.0 Mg?ha?1?year?1 across the states, with the highest productivity mainly concentrated in the area stretching from south-central Minnesota across southern Wisconsin.  相似文献   

7.
ATKINSON  C. J. 《Annals of botany》1984,54(3):397-411
The ability of Betula pubescens seedlings to acclimate to arange of quantum flux densities is examined, paying particularattention to the quantity, rate and type of wood produced. Betulapubescens seedlings were germinated and grown for 2 months ata quantum flux density of 440 µmol m–2 s–1,then transferred to 440, 244 or 89 µmol m–2 s–1. Seedlings transferred to reduced fluence rates were able tosurvive and grow. Acclimation was associated with an increasedallocation of carbon to stem elongation and leaf-area production,this occurred at the expense of root storage carbohydrate androot growth. The rate of wood production was shown to be directlyrelated to quantum flux density. Stem wood structure at smallquantum flux density showed an increase in proportion of fibres,while root wood structure in this regime showed a greater proportionof vessels. In general the activity of phenylalanine ammonia-lyase(PAL) showed little significant difference between treatments.The implications of these changes in wood structure are discussedand related to wood production and PAL activity. Betula pubescens Ehrh., birch., shade tolerance, carbohydrate partitioning, relative growth rate, wood structure, phenylalanine-ammonia-lyase  相似文献   

8.
Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST.  相似文献   

9.
Fast growing hybrid poplar offers the means for sustainable production of specialty and commodity chemicals, in addition to rapid biomass production for lignocellulosic deconstruction. Herein we describe transformation of fast-growing transgenic hybrid poplar lines to produce 2-phenylethanol, this being an important fragrance, flavor, aroma, and commodity chemical. It is also readily converted into styrene or ethyl benzene, the latter being an important commodity aviation fuel component. Introducing this biochemical pathway into hybrid poplars marks the beginnings of developing a platform for a sustainable chemical delivery system to afford this and other valuable specialty/commodity chemicals at the scale and cost needed. These modified plant lines mainly sequester 2-phenylethanol via carbohydrate and other covalently linked derivatives, thereby providing an additional advantage of effective storage until needed. The future potential of this technology is discussed. MALDI metabolite tissue imaging also established localization of these metabolites in the leaf vasculature.  相似文献   

10.
11.
12.
Knowledge of how ecosystem carbon (C) processes respond to variations in precipitation is crucial for assessing impacts of climate change on terrestrial ecosystems. In this study, we examined variations of shoot and root biomass, standing and surface litter, soil respiration, and soil C content along a natural precipitation gradient from 430 to 1200 mm in the southern Great Plains, USA. Our results show that shoot biomass and soil respiration increased linearly with mean annual precipitation (MAP), whereas root biomass and soil C content remained relatively constant along the precipitation gradient. Consequently, the root/shoot ratio linearly decreased with MAP. However, patterns of standing, surface, and total litter mass followed quadratic relationships with MAP along the gradient, likely resulting from counterbalance between litter production and decomposition. Those linear/quadratic equations describing variations of ecosystem C processes with precipitation could be useful for model development, parameterization, and validation at landscape and regional scales to improve predictions of C dynamics in grasslands in response to climate change. Our results indicated that precipitation is an important driver in shaping ecosystem functioning as reflected in vegetation production, litter mass, and soil respiration in grassland ecosystems.  相似文献   

13.
14.
It is vital to find reasons for differences in the results of environmental input‐output (EIO), physical input‐output (PIO), and hybrid input‐output (HIO) models for industrial and environmental policy analysis. Using EIO, PIO, and HIO models, China's industrial metabolism is calculated. Four reasons were found to account for differences in the results of analysis using EIO, PIO, and HIO models: the manner in which they deal with residential consumption, service sectors, and waste recycling, and the assumption of unique sector prices. The HIO model, which treats residential consumption as sectors of the intermediate delivery matrix, is preferred to the EIO and PIO models for analyzing industrial and environmental policies. Moreover, waste recycling in five sectors—agriculture; the manufacture of paper, printing, and articles for culture, education, and sports activities; the manufacture of nonmetallic mineral products; smelting and pressing of metals; and construction—should be comprehensively considered when using the HIO model to study problems related to these five sectors. Improvements in the EIO, PIO, and HIO models and future work are also discussed.  相似文献   

15.
The London reservoirs sited in the lower Thames valley form part of a continuously flowing, drinking water supply system and as such have been wholly designed, constructed and operated by man for this sole function. This paper adds some information on the potential impact of the fish populations on the ecology of these relatively deep reservoirs. The fish fauna was studied by night shore seining (to detect inshore fish communities) and acoustically (to detect the offshore fish communities). Ruffe (Gymnocephalus cernuus) and perch (Perca fluviatilis) are the main species capable of reproduction on the steeply sloping concrete walls of the reservoirs. Cyprinids are almost absent in Wraysbury Reservoir whilst in Queen Mary and Queen Elizabeth II reservoirs they are more abundantly represented due to enhanced spawning possibilities associated with inundated marginal terrestrial plants in Queen Mary and the net-sides of empty fish cages in Queen Elizabeth II reservoir. Fish biomasses of the three London reservoirs studied are low: 6.8 kg/ha in Wraysbury Reservoir, 28.6 kg/ha in Queen Mary reservoir and 45.6 kg/ha in Queen Elizabeth II Reservoir. Coinciding with this is a zooplankton of unusually large-sized cladocerans, largely daphnids, and high fish growth rates.  相似文献   

16.
对福建龙岩城区栽植的30种园林树木测定木材基本密度、生材密度和生材含水率。结果表明,针叶树木材基本密度以柏木Cupressus funebris最高(0.636 g·cm-3),南洋杉Araucaria cunninghamii最低(0.462 g·cm-3);阔叶树以相思树Acacia confusa最高(0.757 g·cm-3),美丽异木棉Ceiba speciosa最低(0.228 g·cm-3)。生材密度针叶树竹柏Podocarpus nagi最高(0.975 g·cm-3),南洋杉最低(0.838 g·cm-3);阔叶树相思树最高(1.204 g·cm-3),石栗Aleurites moluccana最低(0.799 g·cm-3)。生材含水率针叶树竹柏最高(105%),柏木最低(30%);阔叶树以美丽异木棉最高(319%),光皮梾木Swida wilsoniana和木麻黄Casuarina equisetifolia最低,均为56%。南北两向的基本密度、生材密度和生材含水率差异不大。在距树皮8 cm范围内,基本密度和生材密度的径向变化模式可归纳为五种类型:(1)密度从髓心向树皮方向递增;(2)密度从髓心向树皮方向递减;(3)距树皮8 cm范围内密度变化不明显;(4)距树皮3~5 cm范围内密度较低;(5)距树皮3~5 cm范围内密度较高。生材含水率径向变化趋势仅限于上述前四种类型。  相似文献   

17.
《Annals of botany》1997,79(5):517-527
This paper deals with the pattern of nutrient cycling and nutrient use efficiency in four (1–4 years old) poplar (Populus deltoidesMarsh) plantations previously investigated for dry matter dynamics. The present plantations were planted at 3×5 m spacing after clear felling of natural sal (Shorea robustaDipterocarpaceae) mixed broad-leaved forests in central Himalayan Tarai. The nutrient concentrations (N, P and K) in different layers of vegetation were in the order: tree>shrub>herb; whereas the standing state of nutrients were in the order: tree>herb>shrub. Soil, litter and vegetation, respectively accounted for 81–96, 2–4 and 2–15% of the total nutrients in the system. Considerable reductions (trees, 50–68; shrubs, 35–40; and herbs 18–26%) in the concentration of nutrients in leaves occurred during senescence. The uptake of nutrients by the vegetation, and also by the different components, with and without adjustment for internal recycling, was calculated separately. Annual transfer of litter nutrients to the soil by vegetation was 91–148 N, 8–15 P and 70–99 K kg ha−1yr−1. The turnover rate for different nutrients ranged between 0.83 and 0.92 yr−1. The nutrient use efficiency of poplar plantations ranged from 151 to 174 kg ha−1yr−1for N, 1338 to 1566 kg ha−1yr−1for P, and 313 to 318 kg ha−1yr−1for K. Compared with low density eucalypt and older poplar stands, there was a higher proportion of nutrient retranslocation in present poplars, largely because of higher tissue nutrient concentrations. This indicates lower nutrient use efficiency as compared to eucalypt plantations. Compartment models for nutrient dynamics have been developed to represent the distribution of nutrient pools and net annual fluxes within the system.  相似文献   

18.
Eddy covariance was used to measure above-canopy exchanges of CO2 and water vapor at an operational plantation of hybrid poplar (variety ??Walker??) established on marginal agricultural land in east central Alberta, Canada. Winter ecosystem respiration (R e) rates were inferred from seasonal changes in the normalized respiration rate at 10°C (R 10) for the growing season and observations of soil CO2 concentration measured with solid-state probes. Over five consecutive growing seasons following planting, gross ecosystem production (GEP) increased each year, ranging from 21?g?C?m?2?y?1 in year 1 to 469?g?C?m?2?y?1 in year 5. During this period, the annual carbon balance shifted from a net source of greater than 330?g?C?m?2 in year 1 to approximately C-neutral in year 5. Total carbon (C) release over 5?years likely exceeded 630?g?C?m?2. Intra- and interannual variations in temperature and soil water availability greatly affected annual C balance each year. GEP and R e were particularly sensitive to temperature during spring and to soil water availability in summer: year 5 was notable because a cold spring and accumulating drought caused growth and carbon uptake to fall well below their potential. Annual evapotranspiration (ET) increased slightly with leaf area, from 281?mm in year 1 to 323?mm in year 4, but in year 5 it declined, while exceeding total precipitation (P). This trend of increasing annual ET/P suggests that annual GEP could become increasingly water-limited in years with below normal precipitation, as the plantation achieves maximum leaf area. Measured canopy albedos did not change appreciably over three winters, suggesting that estimates of increased radiative forcing resulting from afforestation in high latitudes could be exaggerated in regions where fast-growing deciduous plantations are managed on short (~20-year) rotations.  相似文献   

19.
塔克拉玛干沙漠梭梭地上结构和生物量的自相似模型   总被引:4,自引:0,他引:4  
应用分形自相似原理研究了极端干旱的塔克拉玛干沙漠公路两旁及油田工作区梭梭(Haloxylon ammodendron)的地上结构.研究发现,梭援枝长、基径和冠幅与植株整个地上部分结构之间存在很好的自相似关系.本文基于自相似原理建立了以分枝推测整株生物量的简洁实用的数学模型.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号