首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Genomic prediction accuracy within a large panel was found to be substantially higher than that previously observed in smaller populations, and also higher than QTL-based prediction.

Abstract

In recent years, genomic selection for wheat breeding has been widely studied, but this has typically been restricted to population sizes under 1000 individuals. To assess its efficacy in germplasm representative of commercial breeding programmes, we used a panel of 10,375 Australian wheat breeding lines to investigate the accuracy of genomic prediction for grain yield, physical grain quality and other physiological traits. To achieve this, the complete panel was phenotyped in a dedicated field trial and genotyped using a custom AxiomTM Affymetrix SNP array. A high-quality consensus map was also constructed, allowing the linkage disequilibrium present in the germplasm to be investigated. Using the complete SNP array, genomic prediction accuracies were found to be substantially higher than those previously observed in smaller populations and also more accurate compared to prediction approaches using a finite number of selected quantitative trait loci. Multi-trait genetic correlations were also assessed at an additive and residual genetic level, identifying a negative genetic correlation between grain yield and protein as well as a positive genetic correlation between grain size and test weight.
  相似文献   

2.

Key message

Genomic prediction was evaluated in German winter barley breeding lines. In this material, prediction ability is strongly influenced by population structure and main determinant of prediction ability is the close genetic relatedness of the breeding material.

Abstract

To ensure breeding progress under changing environmental conditions the implementation and evaluation of new breeding methods is of crucial importance. Modern breeding approaches like genomic selection may significantly accelerate breeding progress. We assessed the potential of genomic prediction in a training population of 750 genotypes, consisting of multiple six-rowed winter barley (Hordeum vulgare L.) elite material families and old cultivars, which reflect the breeding history of barley in Germany. Crosses of parents selected from the training set were used to create a set of double-haploid families consisting of 750 genotypes. Those were used to confirm prediction ability estimates based on a cross-validation with the training set material using 11 different genomic prediction models. Population structure was inferred with dimensionality reduction methods like discriminant analysis of principle components and the influence of population structure on prediction ability was investigated. In addition to the size of the training set, marker density is of crucial importance for genomic prediction. We used genome-wide linkage disequilibrium and persistence of linkage phase as indicators to estimate that 11,203 evenly spaced markers are required to capture all QTL effects. Although a 9k SNP array does not contain a sufficient number of polymorphic markers for long-term genomic selection, we obtained fairly high prediction accuracies ranging from 0.31 to 0.71 for the traits earing, hectoliter weight, spikes per square meter, thousand kernel weight and yield and show that they result from the close genetic relatedness of the material. Our work contributes to designing long-term genetic prediction programs for barley breeding.
  相似文献   

3.

Key message

Nineteen tuber quality traits in potato were phenotyped in 205 cultivars and 299 breeder clones. Association analysis using 3364 AFLP loci and 653 SSR-alleles identified QTL for these traits.

Abstract

Two association mapping panels were analysed for marker–trait associations to identify quantitative trait loci (QTL). The first panel comprised 205 historical and contemporary tetraploid potato cultivars that were phenotyped in field trials at two locations with two replicates (the academic panel). The second panel consisted of 299 potato cultivars and included recent breeds obtained from five Dutch potato breeding companies and reference cultivars (the industrial panel). Phenotypic data for the second panel were collected during subsequent clonal selection generations at the individual breeding companies. QTL were identified for 19 agro-morphological and quality traits. Two association mapping models were used: a baseline model without, and a more advanced model with correction for population structure and genetic relatedness. Correction for population structure and genetic relatedness was performed with a kinship matrix estimated from marker information. The detected QTL partly not only confirmed previous studies, e.g. for tuber shape and frying colour, but also new QTL were found like for after baking darkening and enzymatic browning. Pleiotropic effects could be discerned for several QTL.  相似文献   

4.

Key message

Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.

Abstract

Perennial ryegrass (Lolium perenne L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of n = 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.
  相似文献   

5.

Key message

Genomic selection shows great promise for pre-selecting lines with superior bread baking quality in early generations, 3 years ahead of labour-intensive, time-consuming, and costly quality analysis.

Abstract

The genetic improvement of baking quality is one of the grand challenges in wheat breeding as the assessment of the associated traits often involves time-consuming, labour-intensive, and costly testing forcing breeders to postpone sophisticated quality tests to the very last phases of variety development. The prospect of genomic selection for complex traits like grain yield has been shown in numerous studies, and might thus be also an interesting method to select for baking quality traits. Hence, we focused in this study on the accuracy of genomic selection for laborious and expensive to phenotype quality traits as well as its selection response in comparison with phenotypic selection. More than 400 genotyped wheat lines were, therefore, phenotyped for protein content, dough viscoelastic and mixing properties related to baking quality in multi-environment trials 2009–2016. The average prediction accuracy across three independent validation populations was r = 0.39 and could be increased to r = 0.47 by modelling major QTL as fixed effects as well as employing multi-trait prediction models, which resulted in an acceptable prediction accuracy for all dough rheological traits (r = 0.38–0.63). Genomic selection can furthermore be applied 2–3 years earlier than direct phenotypic selection, and the estimated selection response was nearly twice as high in comparison with indirect selection by protein content for baking quality related traits. This considerable advantage of genomic selection could accordingly support breeders in their selection decisions and aid in efficiently combining superior baking quality with grain yield in newly developed wheat varieties.
  相似文献   

6.

Key message

Using NIR and NMR predictions of quality traits overcomes a major barrier for the application of genomic selection to accelerate improvement in grain end-use quality traits of wheat.

Abstract

Grain end-use quality traits are among the most important in wheat breeding. These traits are difficult to breed for, as their assays require flour quantities only obtainable late in the breeding cycle, and are expensive. These traits are therefore an ideal target for genomic selection. However, large reference populations are required for accurate genomic predictions, which are challenging to assemble for these traits for the same reasons they are challenging to breed for. Here, we use predictions of end-use quality derived from near infrared (NIR) or nuclear magnetic resonance (NMR), that require very small amounts of flour, as well as end-use quality measured by industry standard assay in a subset of accessions, in a multi-trait approach for genomic prediction. The NIR and NMR predictions were derived for 19 end-use quality traits in 398 accessions, and were then assayed in 2420 diverse wheat accessions. The accessions were grown out in multiple locations and multiple years, and were genotyped for 51208 SNP. Incorporating NIR and NMR phenotypes in the multi-trait approach increased the accuracy of genomic prediction for most quality traits. The accuracy ranged from 0 to 0.47 before the addition of the NIR/NMR data, while after these data were added, it ranged from 0 to 0.69. Genomic predictions were reasonably robust across locations and years for most traits. Using NIR and NMR predictions of quality traits overcomes a major barrier for the application of genomic selection for grain end-use quality traits in wheat breeding.
  相似文献   

7.

Key message

Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials.

Abstract

The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.
  相似文献   

8.

Key Message

Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model.

Abstract

In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.
  相似文献   

9.

Key message

We propose a novel computational method for genomic selection that combines identical-by-state (IBS)-based Haseman–Elston (HE) regression and best linear prediction (BLP), called HE-BLP.

Abstract

Genomic best linear unbiased prediction (GBLUP) has been widely used in whole-genome prediction for breeding programs. To determine the total genetic variance of a training population, a linear mixed model (LMM) should be solved via restricted maximum likelihood (REML), whose computational complexity is the cube of the sample size. We proposed a novel computational method combining identical-by-state (IBS)-based Haseman–Elston (HE) regression and best linear prediction (BLP), called HE-BLP. With this method, the total genetic variance can be estimated by solving a simple HE linear regression, which has a computational complex of the sample size squared; therefore, it is suitable for large-scale genomic data, except those with which environmental effects need to be estimated simultaneously, because it does not allow for this estimation. In Monte Carlo simulation studies, the estimated heritability based on HE was identical to that based on REML, and the prediction accuracy via HE-BLP and traditional GBLUP was also quite similar when quantitative trait loci (QTLs) were randomly distributed along the genome and their effects followed a normal distribution. In addition, the kernel row number (KRN) trait in a maize IBM population was used to evaluate the performance of the two methods; the results showed similar prediction accuracy of breeding values despite slightly different estimated heritability via HE and REML, probably due to the underlying genetic architecture. HE-BLP can be a future genomic selection method choice for even larger sets of genomic data in certain special cases where environmental effects can be ignored. The software for HE regression and the simulation program is available online in the Genetic Analysis Repository (GEAR; https://github.com/gc5k/GEAR/wiki).
  相似文献   

10.

Background

Genomic selection has become a standard tool in dairy cattle breeding. However, for other animal species, implementation of this technology is hindered by the high cost of genotyping. One way to reduce the routine costs is to genotype selection candidates with an SNP (single nucleotide polymorphism) panel of reduced density. This strategy is investigated in the present paper. Methods are proposed for the approximation of SNP positions, for selection of SNPs to be included in the low-density panel, for genotype imputation, and for the estimation of the accuracy of genomic breeding values. The imputation method was developed for a situation in which selection candidates are genotyped with an SNP panel of reduced density but have high-density genotyped sires. The dams of selection candidates are not genotyped. The methods were applied to a sire line pig population with 895 German Piétrain boars genotyped with the PorcineSNP60 BeadChip.

Results

Genotype imputation error rates were 0.133 for a 384 marker panel, 0.079 for a 768 marker panel, and 0.022 for a 3000 marker panel. Error rates for markers with approximated positions were slightly larger. Availability of high-density genotypes for close relatives of the selection candidates reduced the imputation error rate. The estimated decrease in the accuracy of genomic breeding values due to imputation errors was 3% for the 384 marker panel and negligible for larger panels, provided that at least one parent of the selection candidates was genotyped at high-density.Genomic breeding values predicted from deregressed breeding values with low reliabilities were more strongly correlated with the estimated BLUP breeding values than with the true breeding values. This was not the case when a shortened pedigree was used to predict BLUP breeding values, in which the parents of the individuals genotyped at high-density were considered unknown.

Conclusions

Genomic selection with imputation from very low- to high-density marker panels is a promising strategy for the implementation of genomic selection at acceptable costs. A panel size of 384 markers can be recommended for selection candidates of a pig breeding program if at least one parent is genotyped at high-density, but this appears to be the lower bound.  相似文献   

11.

Key message

Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain.

Abstract

Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates (\({{\widetilde{\text{GEBV}}}_{\text{P}}}\)) and potential offspring (\({{\widetilde{\text{GEBV}}}_{\text{O}}}\)) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using \({{\widetilde{\text{GEBV}}}_{\text{O}}}\) in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.
  相似文献   

12.

Key message

Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs.

Abstract

Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr2) in Triticeae. The Puma allele at the FrR2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the FrR2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.
  相似文献   

13.

Background

The prediction of the outcomes from multistage breeding schemes is especially important for the introduction of genomic selection in dairy cattle. Decorrelated selection indices can be used for the optimisation of such breeding schemes. However, they decrease the accuracy of estimated breeding values and, therefore, the genetic gain to an unforeseeable extent and have not been applied to breeding schemes with different generation intervals and selection intensities in each selection path.

Methods

A grid search was applied in order to identify optimum breeding plans to maximise the genetic gain per year in a multistage, multipath dairy cattle breeding program. In this program, different values of the accuracy of estimated genomic breeding values and of their costs per individual were applied, whereby the total breeding costs were restricted. Both decorrelated indices and optimum selection indices were used together with fast multidimensional integration algorithms to produce results.

Results

In comparison to optimum indices, the genetic gain with decorrelated indices was up to 40% less and the proportion of individuals undergoing genomic selection was different. Additionally, the interaction between selection paths was counter-intuitive and difficult to interpret. Independent of using decorrelated or optimum selection indices, genomic selection replaced traditional progeny testing when maximising the genetic gain per year, as long as the accuracy of estimated genomic breeding values was ≥ 0.45. Overall breeding costs were mainly generated in the path "dam-sire". Selecting males was still the main source of genetic gain per year.

Conclusion

Decorrelated selection indices should not be used because of misleading results and the availability of accurate and fast algorithms for exact multidimensional integration. Genomic selection is the method of choice when maximising the genetic gain per year but genotyping females may not allow for a reduction in overall breeding costs. Furthermore, the economic justification of genotyping females remains questionable.  相似文献   

14.
Genomic prediction for rust resistance in diverse wheat landraces   总被引:1,自引:0,他引:1  

Key message

We have demonstrated that genomic selection in diverse wheat landraces for resistance to leaf, stem and strip rust is possible, as genomic breeding values were moderately accurate. Markers with large effects in the Bayesian analysis confirmed many known genes, while also discovering many previously uncharacterised genome regions associated with rust scores.

Abstract

Genomic selection, where selection decisions are based on genomic estimated breeding values (GEBVs) derived from genome-wide DNA markers, could accelerate genetic progress in plant breeding. In this study, we assessed the accuracy of GEBVs for rust resistance in 206 hexaploid wheat (Triticum aestivum) landraces from the Watkins collection of phenotypically diverse wheat genotypes from 32 countries. The landraces were genotyped for 5,568 SNPs using an Illumina iSelect 9 K bead chip assay and phenotyped for field-based leaf rust (Lr), stem rust (Sr) and stripe rust (Yr) responses across multiple years. Genomic Best Linear Unbiased Prediction (GBLUP) and a Bayesian Regression method (BayesR) were used to predict GEBVs. Based on fivefold cross-validation, the accuracy of genomic prediction averaged across years was 0.35, 0.27 and 0.44 for Lr, Sr and Yr using GBLUP and 0.33, 0.38 and 0.30 for Lr, Sr and Yr using BayesR, respectively. Inclusion of PCR-predicted genotypes for known rust resistance genes increased accuracy more substantially when the marker was diagnostic (Lr34/Sr57/Yr18) for the presence-absence of the gene rather than just linked (Sr2). Investigation of the impact of genetic relatedness between validation and reference lines on accuracy of genomic prediction showed that accuracy will be higher when each validation line had at least one close relationship to the reference lines. Overall, the prediction accuracies achieved in this study are encouraging, and confirm the feasibility of genomic selection in wheat. In several instances, estimated marker effects were confirmed by published literature and results of mapping experiments using Watkins accessions.  相似文献   

15.

Key message

Compared with independent validation, cross-validation simultaneously sampling genotypes and environments provided similar estimates of accuracy for genomic selection, but inflated estimates for marker-assisted selection.

Abstract

Estimates of prediction accuracy of marker-assisted (MAS) and genomic selection (GS) require validations. The main goal of our study was to compare the prediction accuracies of MAS and GS validated in an independent sample with results obtained from fivefold cross-validation using genomic and phenotypic data for Fusarium head blight resistance in wheat. In addition, the applicability of the reliability criterion, a concept originally developed in the context of classic animal breeding and GS, was explored for MAS. We observed that prediction accuracies of MAS were overestimated by 127% using cross-validation sampling genotype and environments in contrast to independent validation. In contrast, prediction accuracies of GS determined in independent samples are similar to those estimated with cross-validation sampling genotype and environments. This can be explained by small population differentiation between the training and validation sets in our study. For European wheat breeding, which is so far characterized by a slow temporal dynamic in allele frequencies, this assumption seems to be realistic. Thus, GS models used to improve European wheat populations are expected to possess a long-lasting validity. Since quantitative trait loci information can be exploited more precisely if the predicted genotype is more related to the training population, the reliability criterion is also a valuable tool to judge the level of prediction accuracy of individual genotypes in MAS.
  相似文献   

16.

Key message

We compare genomic selection methods that use correlated traits to help predict biomass yield in sorghum, and find that trait-assisted genomic selection performs best.

Abstract

Genomic selection (GS) is usually performed on a single trait, but correlated traits can also help predict a focal trait through indirect or multi-trait GS. In this study, we use a pre-breeding population of biomass sorghum to compare strategies that use correlated traits to improve prediction of biomass yield, the focal trait. Correlated traits include moisture, plant height measured at monthly intervals between planting and harvest, and the area under the growth progress curve. In addition to single- and multi-trait direct and indirect GS, we test a new strategy called trait-assisted GS, in which correlated traits are used along with marker data in the validation population to predict a focal trait. Single-trait GS for biomass yield had a prediction accuracy of 0.40. Indirect GS performed best using area under the growth progress curve to predict biomass yield, with a prediction accuracy of 0.37, and did not differ from indirect multi-trait GS that also used moisture information. Multi-trait GS and single-trait GS yielded similar results, indicating that correlated traits did not improve prediction of biomass yield in a standard GS scenario. However, trait-assisted GS increased prediction accuracy by up to \(50\%\) when using plant height in both the training and validation populations to help predict yield in the validation population. Coincidence between selected genotypes in phenotypic and genomic selection was also highest in trait-assisted GS. Overall, these results suggest that trait-assisted GS can be an efficient strategy when correlated traits are obtained earlier or more inexpensively than a focal trait.
  相似文献   

17.

Key message

We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype×? environment interactions.

Abstract

Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype?×?environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the benefits of GS.  相似文献   

18.

Key message

A large genetic variation, moderately high heritability, and promising prediction ability for genomic selection show that wheat breeding can substantially reduce the acrylamide forming potential in bread wheat by a reduction in its precursor asparagine.

Abstract

Acrylamide is a potentially carcinogenic substance that is formed in baked products of wheat via the Maillard reaction from carbonyl sources and asparagine. In bread, the acrylamide content increases almost linearly with the asparagine content of the wheat grains. Our objective was, therefore, to investigate the potential of wheat breeding to contribute to a reduction in acrylamide by decreasing the asparagine content in wheat grains. To this end, we evaluated 149 wheat varieties from Central Europe at three locations for asparagine content, as well as for sulfur content, and five important quality traits regularly assessed in bread wheat breeding. The mean asparagine content ranged from 143.25 to 392.75 mg/kg for the different wheat varieties, thus underlining the possibility to reduce the acrylamide content of baked wheat products considerably by selecting appropriate varieties. Furthermore, a moderately high heritability of 0.65 and no negative correlations with quality traits like protein content, sedimentation volume and falling number show that breeding of quality wheat with low asparagine content is feasible. Genome-wide association mapping identified few QTL for asparagine content, the largest explaining 18% of the genotypic variance. Combining these QTL with a genome-wide prediction approach yielded a mean cross-validated prediction ability of 0.62. As we observed a high genotype-by-environment interaction for asparagine content, we recommend the costly and slow laboratory analysis only for late breeding generations, while selection in early generations could be based on marker-assisted or genomic selection.
  相似文献   

19.

Key message

The calibration data for genomic prediction should represent the full genetic spectrum of a breeding program. Data heterogeneity is minimized by connecting data sources through highly related test units.

Abstract

One of the major challenges of genome-enabled prediction in plant breeding lies in the optimum design of the population employed in model training. With highly interconnected breeding cycles staggered in time the choice of data for model training is not straightforward. We used cross-validation and independent validation to assess the performance of genome-based prediction within and across genetic groups, testers, locations, and years. The study comprised data for 1,073 and 857 doubled haploid lines evaluated as testcrosses in 2 years. Testcrosses were phenotyped for grain dry matter yield and content and genotyped with 56,110 single nucleotide polymorphism markers. Predictive abilities strongly depended on the relatedness of the doubled haploid lines from the estimation set with those on which prediction accuracy was assessed. For scenarios with strong population heterogeneity it was advantageous to perform predictions within a priori defined genetic groups until higher connectivity through related test units was achieved. Differences between group means had a strong effect on predictive abilities obtained with both cross-validation and independent validation. Predictive abilities across subsequent cycles of selection and years were only slightly reduced compared to predictive abilities obtained with cross-validation within the same year. We conclude that the optimum data set for model training in genome-enabled prediction should represent the full genetic and environmental spectrum of the respective breeding program. Data heterogeneity can be reduced by experimental designs that maximize the connectivity between data sources by common or highly related test units.  相似文献   

20.

Background

In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of) the reliability of genomic predictions using real cattle data.

Methods

Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the other 3416 bulls were used for training.

Results

Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were low. No increase in persistency of prediction reliability using imputed sequence data was observed.

Conclusions

Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced no advantage. To investigate the putative advantage of genomic prediction using (imputed) sequence data, a training set with a larger number of individuals that are distantly related to each other and genomic prediction models that incorporate biological information on the SNPs or that apply stricter SNP pre-selection should be considered.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0149-x) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号