首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cereal cyst nematodes (CCN) are a global economic problem for cereal production. Heterodera filipjevi is one of the most commonly identified and widespread CCN species found in many wheat production regions of the world. Transferring novel genes for resistance to H. filipjevi from wild relatives of wheat is a promising strategy for protection of wheat crops. A set of wheat–Dasypyrum villosum chromosome addition lines, T6V#4S·6AL translocation lines and their donor parental lines were tested for their response to the nematode. D. villosum and wheat–D. villosum disomic addition line DA6V#4 were resistant. As T6V#4S·6AL translocation lines were susceptible, resistance was presumed to be located on chromosome 6V#4L. The objective of this study was to produce and characterize wheat–6V#4L translocations and confirm the chromosome location of the resistance. Introgression lines T6V#4L·6AS, T6V#4L-4BL·4BS and DT6V#4L were developed and subjected to molecular cytogenetic analysis. These and four additional wheat–6V#4 introgression lines were tested for response to H. filipjevi in the greenhouse. The results indicated that introgression lines DA6V#4, T6V#4L·6AS, T6V#4L-4BL·4BS, T6V#4L·6V#4S-7BS and DT6VL#4 had higher levels of H. filipjevi resistance than their recurrent parent. However, Del6V#4L-1 and translocation line T6V#4S·6AL were equally susceptible to wheat cv. Chinese Spring. The CCN resistance gene, temporarily named CreV, was therefore physically mapped to chromosome arm 6V#4L FL 0.80–1.00. Translocation chromosomes T6V#4L·6AS transferred to a modern wheat cv. Aikang 58 with its co-dominant molecular markers could be utilized as a novel germplasm for CCN resistance breeding in wheat.  相似文献   

2.

Key message

Pm62, a novel adult-plant resistance (APR) gene against powdery mildew, was transferred from D. villosum into common wheat in the form of Robertsonian translocation T2BS.2VL#5.

Abstract

Powdery mildew, which is caused by the fungus Blumeria graminis f. sp. tritici, is a major disease of wheat resulting in substantial yield and quality losses in many wheat production regions of the world. Introgression of resistance from wild species into common wheat has application for controlling this disease. A Triticum durum-Dasypyrum villosum chromosome 2V#5 disomic addition line, N59B-1 (2n?=?30), improved resistance to powdery mildew at the adult-plant stage, which was attributable to chromosome 2V#5. To transfer this resistance into bread wheat, a total of 298 BC1F1 plants derived from the crossing between N59B-1 and Chinese Spring were screened by combined genomic in situ hybridization and fluorescent in situ hybridization, 2V-specific marker analysis, and reaction to powdery mildew to confirm that a dominant adult-plant resistance gene, designated as Pm62, was located on chromosome 2VL#5. Subsequently, the 2VL#5 (2D) disomic substitution line (NAU1825) and the homozygous T2BS.2VL#5 Robertsonian translocation line (NAU1823), with normal plant vigor and full fertility, were identified by molecular and cytogenetic analyses of the BC1F2 generation. The effects of the T2BS.2VL#5 recombinant chromosome on agronomic traits were also evaluated in the F2 segregation population. The results suggest that the translocated chromosome may have no distinct effect on plant height, 1000-kernel weight or flowering period, but a slight effect on spike length and seeds per spike. The translocation line NAU1823 has being utilized as a novel germplasm in breeding for powdery mildew resistance, and the effects of the T2BS.2VL#5 recombinant chromosome on yield-related and flour quality characters will be further assessed.
  相似文献   

3.
Wheat-Dasypyrum villosum translocations were induced in the progeny of the amphiploid Triticum durum-D. villosum (AABBVV) by pollen irradiation. The rearranged V genome chromosomes were characterized by genomic/fluorescence in situ hybridization (GISH/FISH) and molecular markers. Twenty wheat-D. villosum translocation chromosomes were selected, including four centric, seven large segments, and nine small segments in a Chinese Spring (CS) background. The four centric translocations were subsequently identified by GISH/FISH and by molecular markers specific to chromosome arms of the Triticeae linkage groups. They were T5DL.4VL, T4BL.7VS, and T4BS.7VL as well as the compensating translocation T7AL.7VS. Using a combination of previously developed V chromosome alterations, 52 translocations or deletions that divided V chromosomes into 42 bins were employed for deletion mapping of molecular markers specific to D. villosum in a wheat background. Ninety-five expressed sequence tag (EST)-sequence-tagged site (STS) and seven SSR markers that were previously reported, as well as 72 STS markers screened in the present study, were physically allocated into 37 of 42 chromosome bins of D. villosum. Multiple loci of EST-STS markers were also mapped using CS nullisomic tetrasomic (NT) and ditelosomic (DT) genetic stocks. Most EST-STS homoeoloci were located on homoeologous chromosomes, suggesting a high degree of homology between the genomes of D. villosum and wheat. Four 4VL-specific markers detected homoeoloci on group 7 chromosomes of wheat, indicating that chromosome 4V of D. villosum shows some affinity to both wheat homoeologous groups 4 and 7. This is the first physical map of D. villosum, which will provide insight into the V genome for molecular breeding.  相似文献   

4.

Key message

Development of wheat- D. villosum 1V#4 translocation lines; physically mapping the Glu - V1 and Gli - V1 / Glu - V3 loci; and assess the effects of the introduced Glu - V1 and Gli - V1 / Glu - V3 on wheat bread-making quality.

Abstract

Glu-V1 and Gli-V1/Glu-V3 loci, located in the chromosome 1V of Dasypyrum villosum, were proved to have positive effects on grain quality. However, there are very few reports about the transfer of the D. villosum-derived seed storage protein genes into wheat background by chromosome manipulation. In the present study, a total of six CS-1V#4 introgression lines with different alien-fragment sizes were developed through ionizing radiation of the mature female gametes of CS––D. villosum 1V#4 disomic addition line and confirmed by cytogenetic analysis. Genomic in situ hybridization (GISH), chromosome C-banding, twelve 1V#4-specific EST–STS markers and seed storage protein analysis enabled the cytological physical mapping of Glu-V1 and Gli-V1/Glu-V3 loci to the region of FL 0.50–1.00 of 1V#4S of D. villosum. The Glu-V1 allele of D. villosum was Glu-V1a and its coded protein was V71 subunit. Quality analysis indicated that Glu-V1a together with Gli-V1/Glu-V3 loci showed a positive effect on protein content, Zeleny sedimentation value and the rheological characteristics of wheat flour dough. In addition, the positive effect could be maintained when specific Glu-V1 and Gli-V1/Glu-V3 loci were transferred to the wheat genetic background as in the case of T1V#4S-6BS·6BL, T1V#4S·1BL and T1V#4S·1DS translocation lines. These results showed that the chromosome segment carrying the Glu-V1 and Gli-V1/Glu-V3 loci in 1V#4S of D. villosum had positive effect on bread-making quality, and the T1V#4S-6BS·6BL and T1V#4S·1BL translocation lines could be useful germplasms for bread wheat improvement. The developed 1V#4S-specific molecular markers could be used to rapidly identify and trace the alien chromatin of 1V#4S in wheat background.  相似文献   

5.
Powdery mildew, a wheat (Triticum aestivum L.) foliar disease caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, imposes a constant challenge on wheat production in areas with cool or maritime climates. This study was conducted to identify and transfer the resistance gene in the newly identified common wheat accession ‘D29’. Genetic analysis of the F2 population derived from a cross of D29 with the susceptible elite cultivar Y158 suggested a single dominant gene is responsible for the powdery mildew resistance in this germplasm. This gene was mapped to chromosome 2AL in a region flanked by microsatellite markers Xgdm93 and Xhbg327, and co-segregated with sequence-tagged site (STS) markers Xsts_bcd1231 and TaAetPR5. An allelic test indicated that the D29 gene was allelic to the Pm4 locus. To further evaluate the resistance conferred by this gene and develop new germplasms for breeding, this gene, as well as Pm4a and Pm4b, was transferred to Y158 through backcross and marker-assisted selection. In the resistance spectrum analysis, the D29 gene displayed a resistance spectrum distinguishable from the other Pm4 alleles, including Pm4a, Pm4b, and Pm4c, and thus was designated as Pm4e. The identification of new allelic variation at the Pm4 locus is important for understanding the resistance gene evolution and for breeding wheat cultivars with powdery mildew resistance.  相似文献   

6.

Key message

Pm57, a novel resistant gene against powdery mildew, was transferred into common wheat from Ae. searsi and further mapped to 2S s #1L at an interval of FL0.75 to FL0.87.

Abstract

Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, is one of the most severe foliar diseases of wheat causing reduction in grain yield and quality. Host plant resistance is the most effective and environmentally safe approach to control this disease. Tests of a set of Chinese Spring–Ae. searsii (SsSs, 2n?=?2x?=?14) Feldman & Kislev ex K. Hammer disomic addition lines with a mixed isolate of the powdery mildew fungus identified a novel resistance gene(s), designed as Pm57, which was located on chromosome 2Ss#1. Here, we report the development of ten wheat–Ae. searsii recombinants. The wheat chromosomes involved in five of these recombinants were identified by FISH and SSR marker analysis and three of them were resistant to powdery mildew. Pm57 was further mapped to the long arm of chromosome 2Ss#1 at a fraction length interval of FL 0.75 to FL 0.87. The recombinant stocks T2BS.2BL-2Ss#1L 89-346 (TA5108) with distal 2Ss#1L segments of 28% and 89(5)69 (TA5109) with 33% may be useful in wheat improvement. The PCR marker X2L4g9p4/HaeIII was validated to specifically identify the Ae. searsii 2Ss#1L segment harboring Pm57 in T2BS.2BL-2Ss#1L against 16 wheat varieties and advanced breeding lines, and the development of more user-friendly KASP markers is underway.
  相似文献   

7.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

8.
9.

Key message

Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars.

Abstract

Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2 = 0.91. A total of 108 SSR and 235 SNP marker–trait associations (MTAs) were identified by considering associations with a ?log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.
  相似文献   

10.

Key message

A new powdery mildew resistance gene, designated Pm59, was identified in Afghanistan wheat landrace PI 181356, and mapped in the terminal region of the long arm of chromosome 7A.

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important foliar disease of wheat worldwide. In the Great Plains of the USA, Bgt isolates virulent to widely used powdery mildew resistance genes, such as Pm3a, were previously identified. The objectives of this study were to characterize the powdery mildew resistance gene in Afghanistan landrace PI 181356, which exhibited high resistance to Bgt isolates collected in southern Great Plains, and identify molecular markers for marker-assisted selection. An F2 population and F2:3 lines derived from a cross between PI 181356 and OK1059060-126135-3 were used in this study. Genetic analysis indicated that PI 181356 carries a single dominant gene, designated Pm59, in the terminal region of the long arm of chromosome 7A. Pm59 was mapped to an interval between sequence tag site (STS) markers Xmag1759 and Xmag1714 with genetic distances of 0.4 cM distal to Xmag1759 and 5.7 cM proximal to Xmag1714. Physical mapping suggested that Pm59 is in the distal bin 7AL 0.99–1.00. Pm59 is a novel powdery mildew resistance gene, and confers resistance to Bgt isolates collected from the Great Plains and the state of Montana. Therefore, Pm59 can be used to breed powdery mildew-resistant cultivars in these regions. Xmag1759 is ideal for marker-assisted selection of Pm59 in wheat breeding.
  相似文献   

11.

Key message

A stripe rust resistance gene YrZH22 was mapped by combined BSR-Seq and comparative genomics analyses to a 5.92 centimorgan (cM) genetic interval spanning a 4 Mb physical genomic region on wheat chromosome 4BL1.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases of wheat and severely threatens wheat production worldwide. The widely grown Chinese wheat cultivar Zhoumai 22 is highly resistant to the current prevailing PST race CYR34 (V26). Genetic analysis of F5:6 and F6:7 recombinant inbred line (RIL) populations indicated that adult-plant stripe rust resistance in Zhoumai 22 is controlled by a single gene, temporarily designated YrZH22. By applying bulked segregant RNA-Seq (BSR-Seq), 7 SNP markers were developed and SNP mapping showed that YrZH22 is located between markers WGGB105 and WGGB112 on chromosome arm 4BL. The corresponding genomic regions of the Chinese Spring 4BL genome assembly and physical map of Aegilops tauschii 4DL were selected for comparative genomics analyses to develop nine new polymorphic markers that were used to construct a high-resolution genetic linkage map of YrZH22. YrZH22 was delimited in a 5.92 cM genetic interval between markers WGGB133 and WGGB146, corresponding to 4.1 Mb genomic interval in Chinese Spring 4BL and a 2.2 Mb orthologous genomic region in Ae. tauschii 4DL. The genetic linkage map of YrZH22 will be valuable for fine mapping and positional cloning of YrZH22, and can be used for marker-assisted selection in wheat breeding.
  相似文献   

12.

Key message

We have isolated a novel powdery mildew resistance gene in wheat that was originally introgressed from rye. Further analysis revealed evolutionary divergent history of wheat and rye orthologous resistance genes.

Abstract

Wheat production is under constant threat from a number of fungal pathogens, among them is wheat powdery mildew (Blumeria graminis f. sp. tritici). Deployment of resistance genes is the most economical and sustainable method for mildew control. However, domestication and selective breeding have narrowed genetic diversity of modern wheat germplasm, and breeders have relied on wheat relatives for enriching its gene pool through introgression. Translocations where the 1RS chromosome arm was introgressed from rye to wheat have improved yield and resistance against various pathogens. Here, we isolated the Pm17 mildew resistance gene located on the 1RS introgression in wheat cultivar ‘Amigo’ and found that it is an allele or a close paralog of the Pm8 gene isolated earlier from ‘Petkus’ rye. Functional validation using transient and stable transformation confirmed the identity of Pm17. Analysis of Pm17 and Pm8 coding regions revealed an overall identity of 82.9% at the protein level, with the LRR domains being most divergent. Our analysis also showed that the two rye genes are much more diverse compared to the variants encoded by the Pm3 gene in wheat, which is orthologous to Pm17/Pm8 as concluded from highly conserved upstream sequences in all these genes. Thus, the evolutionary history of these orthologous loci differs in the cereal species rye and wheat and demonstrates that orthologous resistance genes can take different routes towards functionally active genes. These findings suggest that the isolation of Pm3/Pm8/Pm17 orthologs from other grass species, additional alleles from the rye germplasm as well as possibly synthetic variants will result in novel resistance genes useful in wheat breeding.
  相似文献   

13.
Powdery mildew (Pm) caused by Blumeria graminis f. sp. tritici (Bgt) is one of the world’s major wheat diseases and results in large grain yield losses. Discovery and utilization of Pm resistance genes constitute the most common strategy for wheat Pm control. Hongyoumai, a wheat landrace from Henan Province in China, has excellent resistance to infection by Bgt. In order to identify the basis of such Pm resistance, a segregating population was submitted to genetic analysis, which showed that Pm resistance in Hongyoumai was conferred by a single recessive resistance gene. This gene was temporarily named pmHYM. Molecular marker analysis, chromosomal location, resistance spectrum analysis, and an allelism test showed that pmHYM was located on the long arm of chromosome 7B (7BL), most likely representing a new recessive resistance gene allelic with Pm5e and mlXBD. By using 90-kb single-nucleotide polymorphism sequences (SNP) in the BLASTn analysis against the wheat 7BL genome sequence, 12 new simple sequence repeat (SSR) markers linked with pmHYM were developed to map pmHYM co-segregating with the marker Xmp1207 and between markers Xmp925 and Xmp1158, at genetic distances of 2.8 and 2.7 cM, respectively. In addition, physical mapping of the markers linked with pmHYM using Chinese Spring deletion lines indicated a location in the 0.86–1.00 bin of 7BL.  相似文献   

14.
Wheat-Dasypyrum villosum translocated chromosomes T6V#2S?6AL and T6V#4S?6DL are known to confer excellent resistance to wheat powdery mildew (PM). However, it is difficult to distinguish the two sources of PM resistance genes through multi-pathotype testing because to date no virulence for them has been found. To reveal the relationship between the PM resistance genes from the two translocations, the sequence of the Stpk-V gene, a key member of powdery mildew resistance locus Pm21, was used as a reference to isolate homologous genes from a D. villosum accession No.1026 and its derivatives 6V#4(6D) disomic substitution (DS) line RW15 and T6V#4S?6DL translocation line Pm97033. Two genes Stpk-V2 and Stpk-V3 were cloned from No.1026. Sequence alignment showed that Stpk-V2 and Stpk-V3 shared 98.2 % and 96.2 % of their DNA and 99.3 % and 100 % of their amino acids in identity with Stpk-V. Compared with Stpk-V, a 22-bp direct sequence repeat and a miniature inverted-repeat transposable element (MITE) were found in the intron 4 of Stpk-V2 and Stpk-V3, respectively. However, Stpk-V2 was not present in DS line RW15 and translocation line Pm97033 based on the PCR result, indicating that Stpk-V2 did not contribute to the PM resistance of RW15 and Pm97033. In the promoter region, a 78-bp insertion was found not only in Stpk-V2 and Stpk-V3, but also in its orthologous gene Stpk-A of wheat. In addition, there was a 17 bp/8 bp deletion/insertion in the putative promoter of Stpk-V3 in comparison with that of Stpk-V/Stpk-V2. Real-time quantitative RT-PCR analysis indicated that the expression levels of Stpk-V and Stpk-V3 genes in the translocation lines were induced by the pathogen, but Stpk-V had a higher expression level than Stpk-V3 at 12 h after inoculation with Bgt. The diversity of Stpk-V gene will help to explore new resistance genes to PM in D. villosum for wheat breeding.  相似文献   

15.

Main conclusion

This study explored 6P chromosomal translocations in wheat, and determined the effects of 6P intercalary chromosome segments on kernel number per wheat spike. Exploiting and utilising gene(s) from wild relative species has become an essential strategy for wheat crop improvement. In the translocation line Pubing2978, the intercalary 6P chromosome segment from Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) carried valuable multi-kernel gene(s) and was selected from the offspring of the common wheat plant Fukuho and the irradiated wheat-A. cristatum 6P disomic substitution line 4844-8. Genomic in situ hybridisation (GISH), dual-colour fluorescence in situ hybridisation (FISH), and molecular markers were used to detect the small segmental 6P chromosome in the wheat background and its translocation breakpoint. Cytological studies demonstrated that Pubing2978 was a T1AS-6PL-1AS·1AL intercalary translocation with 42 chromosomes. The breakpoint was located near the centromeric region on the wheat chromosome 1AS and was flanked by the markers SSR12 and SSR283 based on an F2 linkage map. The genotypic data, combined with the phenotypic information, implied that A. cristatum 6P chromosomal segment plays an important role in regulating the kernel number per spike (KPS). By comparison, the mean value of KPS in plants with translocations was approximately 10 higher than that in plants without translocations in three segregated populations. Moreover, the improvement in KPS was likely achieved by increasing both the spikelet number per spike (SNS) and the kernel number per spikelet. These excellent agronomic traits laid the foundation for further investigation of valuable genes and make the Pubing2978 line a promising germplasm for wheat breeding.
  相似文献   

16.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

17.

Key message

Phenotyping and mapping data reveal that chromosome intervals containing eyespot resistance genes Pch1 and Pch2 on 7D and 7A, respectively, do not overlap, and thus, these genes are not homoeloci.

Abstract

Eyespot is a stem-base fungal disease of cereals growing in temperate regions. Two main resistances are currently available for use in wheat. Pch1 is a potent single major gene transferred to wheat from Aegilops ventricosa and located on the distal end of chromosome 7D. Pch2, a moderate resistance deriving from Cappelle Desprez, is located at the end of 7AL. The relative positions of Pch1 and Pch2 on 7D and 7A, respectively, suggest that they are homoeoloci. A single seed decent recombinant F7 population was used to refine the position of Pch2 on 7A. New markers designed to 7D also allowed the position of Pch1 to be further defined. We exploited the syntenic relationship between Brachypodium distachyon and wheat to develop 7A and 7D specific KASP markers tagging inter-varietal and interspecific SNPs and allow the comparison of the relative positions of Pch1 and Pch2 on 7D and 7A. Together, phenotyping and mapping data reveal that the intervals containing Pch1 and Pch2 do not overlap, and thus, they cannot be considered homoeloci. Using this information, we analysed two durum wheat lines carrying Pch1 on 7A to determine whether the Ae.ventricosa introgression extended into the region associated with Pch2. This identified that the introgression is distal to Pch2 on 7A, providing further evidence that the genes are not homoeoloci. However, it is feasible to use this material to pyramid Pch1 and Pch2 on 7A in a tetraploid background and also to increase the copy number of Pch1 in combination with Pch2 in a hexaploid background.
  相似文献   

18.

Key message

A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped.

Abstract

Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC1F2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66–0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.
  相似文献   

19.

Main conclusion

A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
  相似文献   

20.

Key message

A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL.

Abstract

Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) mapping placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang?×?Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and Xicsx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号