首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The agouti locus on mouse chromosome 2 encodes a secreted cysteine-rich protein of 131 amino acids that acts as a molecular switch to instruct the melanocyte to make either yellow pigment (phaeomelanin) or black pigment (eumelanin). Mutations that up-regulate agouti expression are dominant to those causing decreased expression and result in yellow coat color. Other associated effects are obesity, diabetes, and increased susceptibility to tumors. To try to define important functional domains of the agouti protein, we have analyzed the molecular defects present in a series of recessive viable agouti mutations. In total, six alleles (a(mJ), a(u), a(da), a(16H), a(18H), a(e)) were examined at both the RNA and DNA level. Two of the alleles, a(16H) and a(e), result from mutations in the agouti coding region. Four alleles (a(mJ), a(u), a(18H), and a(da)) appear to represent regulatory mutations that down-regulate agouti expression. Interestingly, one of these mutations, a(18H), also appears to cause an immunological defect in the homozygous condition. This immunological defect is somewhat analogous to that observed in motheaten (me) mutant mice. Short and long-range restriction enzyme analyses of homozygous a(18H) DNA are consistent with the hypothesis that a(18H) results from a paracentric inversion where one end of the inversion maps in the 5' regulatory region of agouti and the other end in or near a gene that is required for normal immunological function. Cloning the breakpoints of this putative inversion should allow us to identify the gene that confers this interesting immunological disorder.  相似文献   

2.
J. F. Leslie  K. K. Klein 《Genetics》1996,144(2):557-567
The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A(hvy)) and demonstrated that A(hvy) is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A(hvy) mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A(hvy) mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5' RACE and genomic PCR products revealed that A(hvy) resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5' untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A(hvy) mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A(hvy) offspring is influenced in part by the phenotype of their A(hvy) female parent.  相似文献   

3.
Switching between production of eumelanin or pheomelanin in follicular melanocytes is responsible for hair color in mammals; in mice, this switch is controlled by the agouti locus, which encodes agouti signal protein (ASP) through the action of melanocortin receptor 1. To study expression and processing patterns of ASP in the skin and its regulation of pigment production in hair follicles, we have generated a rabbit antibody (termed alphaPEP16) against a synthetic peptide that corresponds to the carboxyl terminus of ASP. The specificity of that antibody was measured by ELISA and was confirmed by Western blot analysis. Using immunohistochemistry, we characterized the expression of ASP in the skin of newborn mice at 3, 6, and 9 days postnatally. Expression in nonagouti (a/a) black mouse skin was negative at all times examined, as expected, and high expression of ASP was observed in 6 day newborn agouti (A/+) and in 6 and 9 day newborn lethal yellow (A(y)/a) mouse skin. In lethal yellow (pheomelanogenic) mice, ASP expression increased day by day as the hair color became more yellow. These expression patterns suggest that ASP is delivered quickly and efficiently to melanocytes and to hair matrix cells in the hair bulbs where it regulates melanin production.  相似文献   

4.
Gene(s) at the agouti locus act within the microenvironment of the hair follicle to switch pigment synthesis in the melanocyte between eumelanin (black or brown pigment) and phaeomelanin (yellow pigment). Many phenotypic variants of this locus have been described. The mechanism(s) of gene action causing such variation in coat-color phenotype is not known. The close linkage of an endogenous ecotropic murine leukemia provirus, Emv-15, to the lethal yellow mutation of the agouti locus provides a means to molecularly access genes at or near the agouti locus. We have identified and used a unique mouse sequence flanking the Emv-15 provirus to define three alleles of the Emv-15 locus. We found a correlation between the presence of specific Emv-15 alleles and the origins of specific agouti locus mutations, confirming close linkage. However, we found some exceptions which suggest that the Emv-15 locus is closely linked to, but genetically separable from, the agouti locus.  相似文献   

5.
Molecular Markers for the agouti Coat Color Locus of the Mouse   总被引:7,自引:3,他引:4       下载免费PDF全文
The agouti (a) coat color locus of the mouse acts within the microenvironment of the hair follicle to control the relative amount and distribution of yellow and black pigment in the coat hairs. Over 18 different mutations with complex dominance relationships have been described at this locus. The lethal yellow (Ay) mutation is the top dominant of this series and is uniquely associated with an endogenous provirus, Emv-15, in three highly inbred strains. However, we report here that it is unlikely that the provirus itself causes the Ay-associated alteration in coat color, since one strain of mice (YBR-Ay/a) lacks the provirus but still retains a yellow coat color. Using single-copy mouse DNA sequences from the regions flanking Emv-15 we have detected three patterns of restriction fragment length polymorphisms (RFLPs) within this region that can be used as molecular markers for different agouti locus alleles: a wild-type agouti (A) pattern, a pattern which generally cosegregates with the nonagouti (a) mutation, and a pattern which is specific to Emv-15. We have used these RFLPs and a panel of 28 recombinant inbred mouse strains to determine the genetic linkage of these sequences with the agouti locus and have found complete concordance between the two (95% confidence limit of 0.00 to 3.79 centimorgans). We have also physically mapped these sequences by in situ hybridization to band H1 of chromosome 2, thus directly confirming previous assignments of the location of the agouti locus.  相似文献   

6.
Tyrosinase activity in the first coat of agouti and black mice   总被引:2,自引:0,他引:2  
Tyrosinase activity was compared in the skin and hair bulbs of young black and agouti mice between 4 and 12 days old. Differences in activity were found to be maximal in both the hair and skin at the time of yellow pigment synthesis in agouti mice. Histological examination suggested that the number of dopa-positive melanocytes is similar in the hair bulbs of agouti and black mice. The level of SH-compounds in the hair bulb was examined and found to be elevated in agouti tissue at the time of phaeomelanin formation. It was shown that sulphydryl compounds such as cysteine and glutathione have an inhibitory effect on tyrosinase, and it is possible that the elevated levels of SH-compounds are responsible for a reduction in tyrosinase activity in agouti mice. In agouti hair bulbs, this effect can be reversed in vitro by addition of copper.  相似文献   

7.
Regulation of yellow pigment formation in mice: a historical perspective   总被引:2,自引:0,他引:2  
Pigment synthesis by hair follicle melanocytes is modulated by a large number of environmental and genetic factors, many of which are discussed in this review. Eumelanic (non-yellow) pigment is produced by hair follicle melanocytes following the binding of alpha-melanocyte stimulating hormone to melanocortin receptor 1. Binding of this hormone to the melanocyte membrane is blocked by agouti signaling protein (ASP) which is encoded by the agouti locus and results in the synthesis of yellow pigment, instead of non-yellow (black/brown) pigment. The cyclical release of ASP by hair follicle cells results in a black/brown hair with a subapical yellow band. This is the wild-type coat color pattern of many mammals and is called agouti. Several dominant mutations at the agouti locus in mice, induced by retrotransposon-like intracisternal A particles, result in ectopic over-expression of ASP and animals with much higher proportions of all-yellow hairs. This abnormal presence of ASP in essentially all body cells results in the 'yellow agouti obese mouse syndrome.' The obesity has been associated with binding of ASP to melanocortin receptor 4 inactivating the latter. The syndrome also includes hyperinsulinemia, increased somatic growth, and increased susceptibility to hyperplasia and carcinogenesis. The physiologic and molecular bases for these syndrome components have not yet been elucidated. This historically orientated review is subdivided, where applicable, into pre- and post-1992 subsections to emphasize the impact of the cloning of the agouti and extension loci and their protein products on the identification of the molecular and physiological pathways modulating the manifold aspects of pheomelanogenesis.  相似文献   

8.
This study was conducted to assess microenvironmental variability within integumental tissue of genetically identical mice with respect to a specific cellular response: cyclic synthesis of yellow and black pigment by hair bulb melanocytes. Crosses were performed within and between inbred strains of mice that were isogenic with the exception of a single gene substitution at the agouti locus. Agouti locus genes included the Avy, Aw, A, atd, at, ax, am, and a alleles. The pigment patterns of dorsal, flank, and ventral hairs of the first and third hair generations and of hairs growing in special integumentary areas such as the pinna, tail, and hind foot were studied. It was found that the amount of yellow pigment synthesized by hair bulb melanocytes within genetically identical mice is both agedependent and conditioned by the integumentary environment. Furthermore, the special integumentary regions produce hairs with a variety of pigment patterns in which the distribution and relative amounts of black and yellow pigments do not necessarily conform to dominance relationships expected among agouti locus alleles as judged by their effects on the pigmentation of the dorsal pelage. We conclude that within genetically uniform integumental tissues, microenvironmental differences occur and are reflected as alterations in the metabolic pattern of differentiated cells.  相似文献   

9.
We extracted the yellow melanin (phaeomelanin), black melanin (eumelanin), and mixed type of melanin from dorsal hair of dominant yellow (A y /a), non-agouti (a/a), and agouti (A/A) mice, respectively. Spectrophotometric and fluorescence spectrophotometric analysis demonstrated that the yellow melanin was qualitatively distinct from the black melanin and that the agouti hair contained both types of pigment.This work was supported by Grant 244004 from the Ministry of Education. Part of this work was presented at the X International Pigment Cell Conference.  相似文献   

10.
11.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

12.
A new autosomal recessive coat color mutant in the Mongolian gerbil (Meriones unguiculatus) is described: recessive yellow. On the dorsal side the mutant has a rich yellow to ginger color. Ventrally it shows the typical creamy white belly of a wild-type Mongolian gerbil. The dorsal yellow hairs have short black tips, and a light olive green base. A clear demarcation line between dorsal and ventral color is present. Crosses between recessive yellow animals and multiple homozygous recessive tester animals (a/a; cchm/cchm; g/g; p/p) resulted only in animals of an agouti (wild-type) phenotype, showing that the new allele is not allelic with any of the known coat color mutations in the Mongolian gerbil. Molecular studies showed that the new mutant is caused by a missence mutation at the extension (E) locus. On a non-agouti background (a/a; e/e) mutant animals look like a dark wild-type agouti. In contrast to wild-type agouti it shows yellow pigmentation and dark ticking at the ventral side, resulting in the absence of a demarcation line. Since black pigment is present in both the agouti and non-agouti variant (A/A; e/e and a/a; e/e), we conclude that recessive yellow in the Mongolian gerbil is non-epistatic to agouti. Additionally we describe a second mutation at the same locus leading to a similar phenotype, however without black pigment and diminishing yellow pigment during life. Fertility and viability of both new mutants are within normal range. The extension (E) gene is known to encode the melanocortin 1 receptor (MC1R). Interestingly, this is the only gene that is known to account for substantial variation in skin and hair color in humans. Many different mutations are known of which some are associated with higher skin cancer incidence.  相似文献   

13.
We describe here two mouse mutants, yellow submarine (Ysb) and light coat and circling (Lcc). Ysb arose as the result of insertions of a transgene, pAA2, into the genome. Lcc is an independent, radiation-induced mutation. Both mutants are characterized by recessive circling behavior and deafness, associated with a non-segregating, semi-dominant yellow coat color. Complementation tests showed that Ysb and Lcc are allelic. We attribute the yellow coat in Ysb and Lcc mice to the absence of black awl overhairs, increased agouti zigzag underhairs, and the presence of agouti awls with long subapical yellow pigment. Chromosomal mapping and genomic characterization showed the Ysb and Lcc mutations involve complex chromosomal rearrangements in overlapping regions of mouse chromosome 3, A2/A3-B/C and B-E1, respectively. Ysb and Lcc show for the first time, to our knowledge, the presence of genes in the B-C region of chromosome 3 important for balance and hearing and the pigmentation and specification of coat hair.  相似文献   

14.
Molecular characterization of the mouse agouti locus.   总被引:37,自引:0,他引:37  
S J Bultman  E J Michaud  R P Woychik 《Cell》1992,71(7):1195-1204
The agouti (a) locus acts within the microenvironment of the hair follicle to regulate coat color pigmentation in the mouse. We have characterized a gene encoding a novel 131 amino acid protein that we propose is the one gene associated with the agouti locus. This gene is normally expressed in a manner consistent with a locus function, and, more importantly, its structure and expression are affected by a number of representative alleles in the agouti dominance hierarchy. In addition, we found that the pleiotropic effects associated with the lethal yellow (Ay) mutation, which include pronounced obesity, diabetes, and the development of neoplasms, are accompanied by deregulated overexpression of the agouti gene in numerous tissues of the adult animal.  相似文献   

15.
16.
17.
We have studied the structural alteration of melanosomes in the melanocytes of agouti mice whose genetic characteristic is to produce eumelanin and phaeomelanin alternately in a single hair bulb. Melanocytes of hair bulbs from 1 to 2 day old mice of the black phase were observed to contain rod-shaped melanosomes of the eumelanin type (eumelanosome). In the melanocytes of the hair bulbs from 4 to 6-day old skin, which exclusively contain phaeomelanin, spherical melanosomes (phaeomelanosomes) were seen. On the other hand, the mice of the transitional phase from black to yellow possessed melanocytes that contained both eumelanosomes and phaeomelanosomes within a single cell. This result indicates that the shift from the eumelanin formation to the phaeomelanin formation or vice versa in agouti hair occurs within a single melanocyte.We observed multivesicular bodies in both the agouti melanocytes of the yellow phase and the genotypically yellow melanocytes. These bodies are considered to be the precursor of the phaeomelanin-containing melanosome. They are sometimes observed to have continuity with E. R. suggesting that the melanosomes are derived from E. R. in the phaeomelanin-forming melanocytes.  相似文献   

18.
Agouti protein (AP) expression in the wild-type agouti mouse (AwJ/AwJ) coincides with a switch in hair follicle melanogenesis from black (eumelanin) to yellow (pheomelanin). Ectopic overexpression of AP in the lethal yellow (Ay/a) mouse cause a pure yellow coat and the lethal yellow syndrome. Thiol concentrations may control the conversion of dopaquinone to pheomelanin in hair follicle melanocytes. Glutathione (GSH) also plays important roles in cellular health and protection. Using HPLC, cysteine and GSH were measured in 1) hair follicles, liver and serum of Ay/a, AwJ/AwJ, and a/a (black) mice, and 2) adipose and spleen tissues of Ay/a and a/a mice on day 9 of regenerating hair growth (late pheomelanin phase). Agouti locus alleles influence thiol metabolism in hair follicles and in other systemic tissues. Ay/a hair follicles and serum showed highest cysteine and lowest GSH levels. AwJ/AwJ mice showed intermediate levels, while a/a hair follicles and serum had lowest cysteine and highest GSH concentrations. In the hair follicle, cysteine (likely derived from enzymatic degradation of GSH) appears to be the primary pheomelanogenic thiol. Agouti locus alleles may also directly or indirectly affect thiol concentrations in systemic tissues like liver and spleen. Cysteine in spleen extracts showed Ay/a > a/a (P > 0.01). An Ay-induced imbalance of thiol metabolism (altering GSH concentrations in multiple tissues) may contribute to the pleiotropic defects of the lethal yellow syndrome.  相似文献   

19.
The recessive black plumage mutation in the Japanese quail (Coturnix japonica) is controlled by an autosomal recessive gene (rb) and displays a blackish-brown phenotype in the recessive homozygous state (rb/rb). A similar black coat color phenotype in nonagouti mice is caused by an autosomal recessive mutation at the agouti locus. An allelism test showed that wild type and mutations for yellow, fawn-2, and recessive black in Japanese quail were multiple alleles (*N, *Y, *F2, and *RB) at the same locus Y and that the dominance relationship was Y*F2 > Y*Y > Y*N > Y*RB. A deletion of 8 bases was found in the ASIP gene in the Y*RB allele, causing a frameshift that changed the last six amino acids, including a cysteine residue, and removed the normal stop codon. Since the cysteine residues at the C terminus are important for disulphide bond formation and tertiary structure of the agouti signaling protein, the deletion is expected to cause a dysfunction of ASIP as an antagonist of alpha-MSH in the Y*RB allele. This is the first evidence that the ASIP gene, known to be involved in coat color variation in mammals, is functional and has a similar effect on plumage color in birds.  相似文献   

20.
Genetic Organization of the agouti Region of the Mouse   总被引:7,自引:0,他引:7       下载免费PDF全文
The agouti locus on mouse chromosome 2 acts via the hair follicle to control the melanic type and distribution of hair pigments. The diverse phenotypes associated with various agouti mutations have led to speculation about the organization of the agouti locus. Earlier studies indicated that two presumed agouti alleles, lethal yellow (Ay) and lethal light-bellied nonagouti (ax), are pseudoallelic. We present genetic data showing probable recombination between Ay and three agouti mutations (at, a, and ax), which suggest that Ay is a pseudoallele of the agouti locus. The close linkage of an endogenous ecotropic murine leukemia provirus, Emv-15, to Ay provides a molecular access to genes at or near the agouti locus. However, previous studies suggested that the Emv-15 locus can recombine with some agouti alleles and therefore we analyzed mice from recombinant inbred strains and backcrosses to measure the genetic distance between various agouti alleles and the Emv-15 locus. Our data indicate that the Emv-15 locus is less than 0.3 cM from the agouti locus. These experiments provide a conceptual framework for initiating chromosome walking experiments designed to retrieve sequences from the agouti locus and give new insight into the genetic organization of the agouti region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号