首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, beta-catenin has been reported to control the expression of morphogenetic genes through the Wnt signaling pathway in invertebrate embryogenesis. In this study, the distribution pattern of beta-catenin during starfish embryogenesis was investigated using immunohistochemistry. In 16-cell stage embryos, beta-catenin began to accumulate in some nuclei at the vegetal pole. During the early cleavage stage, the cells expressing nuclear beta-catenin increased in number in the vegetal pole region of the embryos, and the beta-catenin signal increased in intensity in each nucleus. At the blastula stage, signal for beta-catenin was also found in the cytoplasm of the cells with nuclear beta-catenin. At the vegetal plate stage, almost all vegetal plate cells expressed beta-catenin in both the nucleus and cytoplasm. When the embryos developed to early gastrulae, cells with nuclear beta-catenin were restricted to the archenteron tip, and the signal gradually faded in later stages. The localization and temporal change of beta-catenin expression suggests that beta-catenin has a pivotal role in archenteron formation in starfish embryos.  相似文献   

2.
3.
Nuclear localization of beta-catenin is most likely the first step of embryonic axis formation or embryonic cell specification in a wide variety of animal groups. Therefore, the elucidation of beta-catenin target genes is a key research subject in understanding the molecular mechanisms of the early embryogenesis of animals. In Ciona savignyi embryos, nuclear accumulation of beta-catenin is the first step of endodermal cell specification. Previous subtractive hybridization screens of mRNAs between beta-catenin-overexpressed embryos and nuclear beta-catenin-depleted embryos have resulted in the identification of beta-catenin downstream genes in Ciona embryos. In the present study, I characterize seven additional beta-catenin downstream genes, Cs-cadherinII, Cs-protocadherin, Cs-Eph, Cs-betaCD1, Cs-netrin, Cs-frizzled3/6, and Cs-lefty/antivin. All of these genes were expressed in vegetal blastomeres between the 16-cell and 110-cell stages, although their spatial and temporal expression patterns were different from one another. In situ hybridizations and real-time PCR revealed that the expression of all of these genes was up-regulated in beta-catenin-overexpressed embryos, and down-regulated in beta-catenin-suppressed embryos. Therefore, the accumulation of beta-catenin in the nuclei of vegetal blastomeres activates various vegetally expressed genes with potentially important functions in the specification of these cells.  相似文献   

4.
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.  相似文献   

5.
beta-Catenin has a central role in the early axial patterning of metazoan embryos. In the sea urchin, beta-catenin accumulates in the nuclei of vegetal blastomeres and controls endomesoderm specification. Here, we use in-vivo measurements of the half-life of fluorescently tagged beta-catenin in specific blastomeres to demonstrate a gradient in beta-catenin stability along the animal-vegetal axis during early cleavage. This gradient is dependent on GSK3beta-mediated phosphorylation of beta-catenin. Calculations show that the difference in beta-catenin half-life at the animal and vegetal poles of the early embryo is sufficient to produce a difference of more than 100-fold in levels of the protein in less than 2 hours. We show that dishevelled (Dsh), a key signaling protein, is required for the stabilization of beta-catenin in vegetal cells and provide evidence that Dsh undergoes a local activation in the vegetal region of the embryo. Finally, we report that GFP-tagged Dsh is targeted specifically to the vegetal cortex of the fertilized egg. During cleavage, Dsh-GFP is partitioned predominantly into vegetal blastomeres. An extensive mutational analysis of Dsh identifies several regions of the protein that are required for vegetal cortical targeting, including a phospholipid-binding motif near the N-terminus.  相似文献   

6.
At fourth cleavage of sea urchin embryos four micromeres at the vegetal pole separate from four macromeres just above them in an unequal cleavage. The micromeres have the capacity to induce a second axis if transplanted to the animal pole and the absence of micromeres at the vegetal pole results in the failure of macromere progeny to specify secondary mesenchyme cells (SMCs). This suggests that micromeres have the capacity to induce SMCs. We demonstrate that micromeres require nuclear beta-catenin to exhibit SMC induction activity. Transplantation studies show that much of the vegetal hemisphere is competent to receive the induction signal. The micromeres induce SMCs, most likely through direct contact with macromere progeny, or at most a cell diameter away. The induction is quantitative in that more SMCs are induced by four micromeres than by one. Temporal studies show that the induction signal is passed from the micromeres to macromere progeny between the eighth and tenth cleavage. If micromeres are removed from hosts at the fourth cleavage, SMC induction in hosts is rescued if they later receive transplanted micromeres between the eighth and tenth cleavage. After the tenth cleavage addition of induction-competent micromeres to micromereless embryos fails to specify SMCs. For macromere progeny to be competent to receive the micromere induction signal, beta-catenin must enter macromere nuclei. The macromere progeny receive the micromere induction signal through the Notch receptor. Signaling-competent micromeres fail to induce SMCs if macromeres express dominant-negative Notch. Expression of an activated Notch construct in macromeres rescues SMC specification in the absence of induction-competent micromeres. These data are consistent with a model whereby beta-catenin enters the nuclei of micromeres and, as a consequence, the micromeres produce an inductive ligand. Between the eighth and tenth cleavage micromeres induce SMCs through Notch. In order to be receptive to the micromere inductive signal the macromeres first must transport beta-catenin to their nuclei, and as one consequence the Notch pathway becomes competent to receive the micromere induction signal, and to transduce that signal. As Notch is maternally expressed in macromeres, additional components must be downstream of nuclear beta-catenin in macromeres for these cells to receive and transduce the micromere induction signal.  相似文献   

7.
8.
In zebrafish, the program for dorsal specification begins soon after fertilization. Dorsal determinants are localized initially to the vegetal pole, then transported to the blastoderm, where they are thought to activate the canonical Wnt pathway, which induces the expression of dorsal-specific genes. We identified a novel maternal-effect recessive mutation, tokkaebi (tkk), that affects formation of the dorsal axis. Severely ventralized phenotypes, including a lack of dorso-anterior structures, were seen in 5-100% of the embryos obtained from tkk homozygous transmitting females. tkk embryos displayed defects in the nuclear accumulation of beta-catenin on the dorsal side, and reduced or absent expression of dorsal-specific genes. Mesoderm and endoderm formation outside the dorsal axis was not significantly affected. Injection of RNAs for activated beta-catenin, dominant-negative forms of Axin1 and GSK3beta, and wild-type Dvl3, into the tkk embryos suppressed the ventralized phenotypes and/or dorsalized the embryos, and restored or induced an ectopic and expanded expression of bozozok/dharma and goosecoid. However, dorsalization by wnt RNAs was affected in the tkk embryos. Inhibition of cytoplasmic calcium release elicited an ectopic and expanded expression of chordin in the wild-type, but did not restore chordin expression efficiently in the tkk embryos. These data indicate that the tkk gene product functions upstream of or parallel to the beta-catenin-degradation machinery to control the stability of beta-catenin. The tkk locus was mapped to chromosome 16. These data provide genetic evidence that the maternally derived canonical Wnt pathway upstream of beta-catenin is involved in dorsal axis formation in zebrafish.  相似文献   

9.
Many components of the Wnt/beta-catenin signaling pathway are expressed during mouse pre-implantation embryo development, suggesting that this pathway may control cell proliferation and differentiation at this time. We find no evidence for a functional activity of this pathway in cleavage-stage embryos using the Wnt-reporter line, BAT-gal. To further probe the activity of this pathway, we activated beta-catenin signaling by mating a zona pellucida3-cre (Zp3-cre) transgenic mouse line with a mouse line containing an exon3-floxed beta-catenin allele. The result is expression of a stabilized form of beta-catenin, resistant to degradation by the GSK3beta-mediated proteasome pathway, expressed in the developing oocyte and in each cell of the resulting embryos. Nuclear localization and signaling function of beta-catenin were not observed in cleavage-stage embryos derived from these oocytes. These results indicate that in pre-implantation embryos, molecular mechanisms independent of the GSK3beta-mediated ubiquitination and proteasome degradation pathway inhibit the nuclear function of beta-catenin. Although the mutant blastocysts initially developed normally, they then exhibited a specific phenotype in the embryonic ectoderm layer of early post-implantation embryos. We show a nuclear function of beta-catenin in the mutant epiblast that leads to activation of Wnt/beta-catenin target genes. As a consequence, cells of the embryonic ectoderm change their fate, resulting in a premature epithelial-mesenchymal transition.  相似文献   

10.
In sea urchin embryos, the initial animal-vegetal (AV) axis is specified during oogenesis but the mechanism is largely unknown. By using chemical reagents such as lithium, it is possible to shift the principal embryonic territories toward a vegetal fate. We have investigated the possibility of obtaining the same morphological effect as with lithium by utilizing Fabs against the maternal Bep4 protein that is localized in the animal part of Paracentrotus lividus egg and embryos. Incubation of fertilized eggs with Fabs against Bep4 protein causes exogastrulation at 48 h of development of P. lividus embryos, similar to embryos treated with lithium. This vegetalizing effect was ascertained by utilizing territorial markers such as EctoV, EndoI, and Ig8. The effect of Fabs against Bep4 on gene expression was observed by monitoring spatial expression of the hatching enzyme gene. A decreased expression domain compared to its normal spatial distribution was detected and this effect was again comparable to those obtained with lithium treatment. Association of Bep4 with a cadherin was demonstrated by immunoprecipitation and immunostaining experiments, and an involvement in cell signaling is discussed. In addition, treatment of embryos with anti-Bep4 Fabs causes an enhancement in the level and an expansion in the pattern of nuclear beta-catenin. Moreover, this treatment also provokes a decrease of beta-catenin in adherens junctions. Together, these data indicate that anti-Bep4 Fabs provoke a shift of the animal-vegetal boundary toward the animal pole and suggest an active role of Bep4 protein in patterning along the AV axis.  相似文献   

11.
The molecular mechanisms guiding the positioning of the ectoderm-endoderm boundary along the animal-vegetal axis of the sea urchin embryo remain largely unknown. We report here a role for the sea urchin homolog of the Notch receptor, LvNotch, in mediating the position of this boundary. Overexpression of an activated form of LvNotch throughout the embryo shifts the ectoderm-endoderm boundary more animally along the animal-vegetal axis, whereas expression of a dominant negative form shifts the border vegetally. Mosaic experiments that target activated and dominant negative forms of LvNotch into individual blastomeres of the early embryo, combined with lineage analyses, further reveal that LvNotch signaling mediates the position of this boundary by distinct mechanisms within the animal versus vegetal portions of the embryo. In the animal region of the embryo, LvNotch signaling acts cell autonomously to promote endoderm formation more animally, while in the vegetal portion, LvNotch signaling also promotes the ectoderm-endoderm boundary more animally, but through a cell non-autonomous mechanism. We further demonstrate that vegetal LvNotch signaling controls the localization of nuclear beta-catenin at the ectoderm-endoderm boundary. Based on these results, we propose that LvNotch signaling promotes the position of the ectoderm-endoderm boundary more animally via two mechanisms: (1) a cell-autonomous function within the animal region of the embryo, and (2) a cell non-autonomous role in the vegetal region that regulates a signal(s) mediating ectoderm-endoderm position, possibly through the control of nuclear beta-catenin at the boundary.  相似文献   

12.
13.
Since the three main pathways (the Wnt, VegT and BMP pathways) involved in organizer and axis formation in the Xenopus embryo are now characterized, the challenge is to understand their interactions. Here three comparisons were made. Firstly, we made a systematic comparison of the expression of zygotic genes in sibling wild-type, VegT-depleted (VegT(-)), beta-catenin-depleted (beta-catenin(-)) and double depleted (VegT(-)/beta-catenin(-)) embryos and placed early zygotic genes into specific groups. In the first group some organizer genes, including chordin, noggin and cerberus, required the activity of both the Wnt pathway and the VegT pathway to be expressed. A second group including Xnr1, 2, 4 and Xlim1 were initiated by the VegT pathway but their dorsoventral pattern and amount of their expression was regulated by the Wnt pathway. Secondly, we compared the roles of the Wnt and VegT pathways in producing dorsal signals. Explant co-culture experiments showed that the Wnt pathway did not cause the release of a dorsal signal from the vegetal mass independent from the VegT pathway. Finally we compared the extent to which inhibiting Smad 1 phosphorylation in one area of VegT(-), or beta-catenin(-) embryos would rescue organizer and axis formation. We found that BMP inhibition with cm-BMP7 mRNA had no rescuing effects on VegT(-) embryos, while cm-BMP7 and noggin mRNA caused a complete rescue of the trunk, but not of the anterior pattern in beta-catenin(-) embryos.  相似文献   

14.
Ablation of vegetal cytoplasm from newly fertilized Xenopus eggs results in the development of permanent blastula-type embryos (PBEs). PBEs cleave normally and develop into a very simple tissue consisting only of atypical epidermis. We tried to restore complete embryonic development in PBEs by cytoplasmic transplantation or by mRNA injection. We show a two-step reconstruction of the body plan. In the first step, PBEs injected with either marginal cytoplasm or synthetic VegT RNA restored gastrulation and mesoderm formation, but not axial patterning. Injection of Xwnt8 mRNA (acting upstream of beta-catenin and thus substitutes for the dorsal determinant) did not restore axial development in PBEs. Simultaneous injections of Xwnt8 and VegT into PBEs resulted in dorsal axis development, showing the synergy of these molecules in axial development. These results suggest that the mixing of two cytoplasmic determinants, i.e. the dorsal determinant in the vegetal pole and the endo-mesodermal determinant in the whole vegetal half, triggers the early axial developmental process in Xenopus embryos.  相似文献   

15.
16.
The animal plate of the sea urchin embryo becomes the apical organ, a sensory structure of the larva. In the absence of vegetal signaling, an expanded and unpatterned apical organ forms. To investigate the signaling that restricts the size of the animal plate and patterns neurogenesis, we have expressed molecules that regulate specification of ectoderm in embryos and chimeras. Enhancing oral ectoderm suppresses serotonergic neuron differentiation, whereas enhancing aboral or ciliary band ectoderm increases differentiation of serotonergic neurons. In embryos in which vegetal signaling is blocked, Nodal expression does not reduce the size of the thickened animal plate; however, almost no neurons form. Expression of BMP in the absence of vegetal signaling also does not restrict the size of the animal plate, but abundant serotonergic neurons form. In chimeras in which vegetal signaling is blocked in the entire embryo, and one half of the embryo expresses Nodal, serotonergic neuron formation is suppressed in both halves. In similar chimeras in which vegetal signaling is blocked and one half of the embryo expresses Goosecoid (Gsc), serotonergic neurons form only in the half of the embryo not expressing Gsc. We propose that neurogenesis is specified by a maternal program that is restricted to the animal pole by signaling that is dependent on nuclearization of beta-catenin and specifies ciliary band ectoderm. Subsequently, neurogenesis in the animal plate is patterned by suppression of serotonergic neuron formation by Nodal. Like other metazoans, echinoderms appear to have a phase of neural development during which the specification of ectoderm restricts and patterns neurogenesis.  相似文献   

17.
18.
In early Ciona embryos, nuclear accumulation of beta-catenin is most probably the first step of endodermal cell specification. If beta-catenin is mis- and/or overexpressed, presumptive notochord cells and epidermal cells change their fates into endodermal cells, whereas if beta-catenin nuclear localization is downregulated by the overexpression of cadherin, the endoderm differentiation is suppressed, accompanied with the differentiation of extra epidermal cells ( Imai, K., Takada, N., Satoh, N. and Satou, Y. (2000) Development 127, 3009-3020). Subtractive hybridization screens of mRNAs between beta-catenin overexpressed embryos and cadherin overexpressed embryos were conducted to identify potential beta-catenin target genes that are responsible for endoderm differentiation in Ciona savignyi embryos. We found that a LIM-homeobox gene (Cs-lhx3), an otx homolog (Cs-otx) and an NK-2 class gene (Cs-ttf1) were among beta-catenin downstream genes. In situ hybridization signals for early zygotic expression of Cs-lhx3 were evident only in the presumptive endodermal cells as early as the 32-cell stage, those of Cs-otx in the mesoendodermal cells at the 32-cell stage and those of Cs-ttf1 in the endodermal cells at the 64-cell stage. Later, Cs-lhx3 was expressed again in a set of neuronal cells in the tailbud embryo, while Cs-otx was expressed in the anterior nervous system of the embryo. Expression of all three genes was upregulated in beta-catenin overexpressed embryos and downregulated in cadherin overexpressed embryos. Injection of morpholino oligonucleotides against Cs-otx did not affect the embryonic endoderm differentiation, although the formation of the central nervous system was suppressed. Injection of Cs-ttf1 morpholino oligonucleotides also failed to suppress the endoderm differentiation, although injection of its synthetic mRNAs resulted in ectopic development of endoderm differentiation marker alkaline phosphatase. By contrast, injection of Cs-lhx3 morpholino oligo suppressed the endodermal cell differentiation and this suppression was rescued by injection of Cs-lhx3 mRNA into eggs. In addition, although injection of delE-Ci-cadherin mRNA into eggs resulted in the suppression of alkaline phosphatase development, injection of delE-Ci-cadherin mRNA with Cs-lhx3 mRNA rescued the alkaline phosphatase development. These results strongly suggest that a LIM-homeobox gene Cs-lhx3 is one of the beta-catenin downstream genes and that its early expression in embryonic endodermal cells is responsible for their differentiation.  相似文献   

19.
20.
The Nieuwkoop center is the earliest signaling center during dorsal-ventral pattern formation in amphibian embryos and has been implied to function in induction of the Spemann-Mangold organizer. In zebrafish, Nieuwkoop-center-like activity resides in the dorsal yolk syncytial layer (YSL) at the interface of the vegetal yolk cell and the blastoderm. hex homologs are expressed in the anterior endomesoderm in frogs (Xhex), the anterior visceral endoderm in mice, and the dorsal YSL in zebrafish (hhex). Here, we investigate the control of hhex expression in the YSL. We demonstrate that bozozok (boz) is absolutely required for early hhex expression, while overexpression of boz causes ectopic hhex expression. Activation of Wnt/beta-catenin signaling by LiCl induces hhex expression in wild-type YSL but not in boz mutant embryos, revealing that boz activity is required downstream of Wnt/beta-catenin signaling for hhex expression. Further, we show that the boz-mediated induction of hhex is independent of the Boz-mediated repression of bmp2b. Our data reveal that repressive effects of both Vega1 and Vega2 may be responsible for the exclusion of hhex expression from the ventral and lateral parts of the YSL. In summary, zebrafish hhex appears to be activated by Wnt/beta-catenin in the dorsal YSL, where Boz acts in a permissive way to limit repression of hhex by Vega1 and Vega2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号